Skip to main content

Mixed-Mode Response of Nigral Dopaminergic Neurons: An in Silico Study on SpiNNaker

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2023 (ICANN 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14258))

Included in the following conference series:

  • 628 Accesses

Abstract

We present a work-in-progress on the mixed-mode (burst, non-burst) spiking response of the Substantia-Nigra-pars-compacta (SNc) using a conductance-based Izhikevich’s spiking neuron (IZK) model on SpiNNaker. The SNc is a primary source of Dopamine (DA) that is essential for reward-based learning and prediction in the brain and forms a part of the Basal Ganglia (BG). The bursting phases of the mixed-mode facilitate reward-related DA release whereas the non-burst phases maintain the base-levels of DA in the extracellular space. Previously, we have implemented a BG model where the modulatory effects of DA on the network synapses were simulated using static conductances. Recently, we have implemented the time-varying effects of reward-based DA release in a balanced-random-network. However, both these works did not include the SNc population. Here, we present an SNc population simulated on SpiNNaker and parameterised to display mixed-mode response; our goal is to integrate it into the existing BG model. We observe that the IZK model parameter d is crucial for model response transition between the burst and non-burst modes. Furthermore, inhibition play a pivotal role in transition from burst to mixed-mode response as reported in physiological studies. In addition, we have identified the constant current inputs in the model that facilitate mixed-mode response. With appropriate parameterisation of the efferents from the existing BG model to the SNc population, the burst to non-burst ratio in the mixed-mode response conforms to physiological observations. Continuing research is looking into using the SNc population to model reward-based learning and decision-making by the brain.

This research was supported by the Science and Engineering Research Board of India (SERB) Grant no. CRG/2019/003534. Access to SpiNNaker server was via the Human Brain Project; support for all SpiNNaker-based work was provided by the SpiNNaker team, the University of Manchester.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge, K.C.: The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology 191, 391–431 (2007)

    Article  Google Scholar 

  2. Best, J.A., Frederik Nijhout, H., Reed, M.C.: Mathematical models of neuromodulation and implications for neurology and psychiatry. In: Érdi, P., Sen Bhattacharya, B., Cochran, A.L. (eds.) Computational Neurology and Psychiatry. SSB, vol. 6, pp. 191–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49959-8_8

    Chapter  Google Scholar 

  3. Cullen, M., Wong-Lin, K.: Integrated dopaminergic neuronal model with reduced intracellular processes and inhibitory autoreceptors. IET Syst. Biol. 9(6), 245–258 (2015)

    Article  Google Scholar 

  4. Dreyer, J.K., Herrik, K.F., Berg, R.W., Hounsgaard, J.D.: Influence of phasic and tonic dopamine release on receptor activation. J. Neurosci. 30(42), 14273–14283 (2010)

    Article  Google Scholar 

  5. Enuganti, P.K. et al.: Instrumental conditioning with neuromodulated plasticity on SpiNNaker. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) Neural Information Processing. ICONIP 2022. LNCS, vol. 13624, pp. 148–159. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30108-7_13

  6. Furber, S.B., Galluppi, F., Temple, S., Plana, L.A.: The spinnaker project. Proc. IEEE 102(5), 652–665 (2014)

    Article  Google Scholar 

  7. Grace, A.A., Bunney, B.S.: The control of firing pattern in nigral dopamine neurons: burst firing. J. Neurosci. 4(11), 2877–2890 (1984)

    Article  Google Scholar 

  8. Grace, A.A., Bunney, B.S.: The control of firing pattern in nigral dopamine neurons: single spike firing. J. Neurosci. 4(11), 2866–2876 (1984)

    Article  Google Scholar 

  9. Gurney, K., Prescott, T.J., Redgrave, P.: A computational model of action selection in the basal ganglia. i. a new functional anatomy. Biol. Cybern. 84(6), 401–410 (2001)

    Google Scholar 

  10. Humphries, M.D., Stewart, R.D., Gurney, K.: A physiollogically plausible model of action selection and oscillatory activity in the basal ganglia. J. Neurosci. 26(50), 12921–12942 (2006)

    Article  Google Scholar 

  11. Hyland, B.I., Reynolds, J., Hay, J., Perk, C., Miller, R.: Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 114(2), 475–492 (2002)

    Article  Google Scholar 

  12. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  13. Izhikevich, E.M.: Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex 17(10), 2443–2452 (2007)

    Article  Google Scholar 

  14. Merrison-Hort, R., Yousif, N., Ferrario, A., Borisyuk, R.: Oscillatory neural models of the basal ganglia for action selection in healthy and parkinsonian cases. In: Érdi, P., Sen Bhattacharya, B., Cochran, A.L. (eds.) Computational Neurology and Psychiatry. SSB, vol. 6, pp. 149–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49959-8_7

    Chapter  Google Scholar 

  15. Mikaitis, M., Garcia, G.P., Knight, J., Furber, S.: Neuromodulated synaptic plasticity on the spinnaker neuromorphic system. Front. Neurosci. 30(30), 10127–10134 (2018)

    Google Scholar 

  16. Naito, A., Kita, H.: The cortico-pallidal projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res. 653(1–2), 251–257 (1994)

    Article  Google Scholar 

  17. Oorschot, D.E.: Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a sterological study using the cavalieri and optical disector methods. J. Comp. Neurol. 366, 580–599 (1996)

    Article  Google Scholar 

  18. Redgrave, P., Coizet, V., Reynolds, J.: Phasic dopamine signaling and basal ganglia function. In: Handbook of Behavioral Neuroscience, vol. 20, pp. 549–559. Elsevier (2010)

    Google Scholar 

  19. Redgrave, P., Gurney, K.: The short-latency dopamine signal: a role in discovering novel actions? Nat. Rev. Neurosci. 7(12), 967–975 (2006)

    Article  Google Scholar 

  20. Rhodes, O., et al.: sPyNNaker: A software package for running PyNN simulations on spinnaker. Front. Neuroscience 12, 816 (2018)

    Google Scholar 

  21. Schultz, W.: Predictive reward signal of dopamine neurons. J. Neurophysiol. 80(1), 1–27 (1998). https://doi.org/10.1152/jn.1998.80.1.1. PMID: 9658025

    Article  Google Scholar 

  22. Schultz, W.: Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95(3), 853–951 (2015)

    Article  Google Scholar 

  23. Sen-Bhattacharya, B., et al.: Building a spiking neural network model of the basal ganglia on spinnaker. IEEE Trans. Cogn. Dev. Syst. 10(3), 823–836 (2018)

    Article  Google Scholar 

  24. Steinberg, E.E., Keiflin, R., Boivin, J.R., Witten, I.B., Deisseroth, K., Janak, P.H.: A causal link between prediction errors, dopamine neurons and learning. Nat. Neurosci. 16(7), 966–973 (2013)

    Article  Google Scholar 

  25. Tepper, J.M.: Neurophysiology of substantia Nigra dopamine neurons: modulation by GABA. Handbook Behav. Neurosci. 20, 275–296 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Basabdatta Sen Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Enuganti, P.K., Sen Bhattacharya, B. (2023). Mixed-Mode Response of Nigral Dopaminergic Neurons: An in Silico Study on SpiNNaker. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning – ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14258. Springer, Cham. https://doi.org/10.1007/978-3-031-44192-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44192-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44191-2

  • Online ISBN: 978-3-031-44192-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics