Skip to main content

Advertisement

Log in

Low diversity and abundance of root endophytes prevail throughout the life cycle of an annual halophyte

  • Original Article
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Plants growing in highly saline soils harbor unique communities of fungal root endophytes. We aimed to gain insight into how these communities are established in natural plant populations. We used cultivation-based and molecular approaches to examine root-endophytic colonization in the annual halophyte Salicornia patula at three time points over a 5-month period, from establishment to flowering. At the last sampling, the endophytic community of S. patula was compared to that in the related but perennial halophyte Arthrocnemum macrostachyum. The presence of root endophytes in S. patula was negligible at the first two sampling times, and remained low at the last sampling compared to A. macrostachyum. The latter species showed a well-established endophytic community in its roots that differed from that in S. patula, which was dominated by members of Pleosporales. Although such differences could be partially due to the host lifestyle, the possibility of a strong effect of the substratum could not be excluded. Altogether, our data indicate that the fungal endophytic colonization of roots is a slow process under salt stress. Therefore, we suggest that, in contrast to what is proposed for other systems, endophyte symbioses are unlikely to impact the development of the short-life-cycled S. patula living in these environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Wahab MA, Pang K-L, Nagahama T et al (2010) Phylogenetic evaluation of anamorphic species of Cirrenalia and Cumulospora with the description of eight new genera and four new species. Mycol Prog 9:537–558

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bálint M, Bahram M, Eren AM et al (2016) Millions of reads, thousands of taxa: microbial community structure and associations analyzed via marker genes. FEMS Microbiol Rev fuw017

  • Cantrell SA, Baez-Félix C (2010) Fungal molecular diversity of a Puerto Rican subtropical hypersaline microbial mat. Fungal Ecol 3:402–405

    Article  Google Scholar 

  • Cantrell SA, Casillas-Martínez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol Res 110:962–970

    Article  CAS  PubMed  Google Scholar 

  • Denison RF, Kiers ET (2011) Life histories of symbiotic rhizobia and mycorrhizal fungi. Curr Biol 21:R775–R785

    Article  CAS  PubMed  Google Scholar 

  • Deshmukh S, Hückelhoven R, Schäfer P et al (2006) The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci 103:18450–18457

  • Fröhlich J, Hyde KD, Petrini O (2000) Endophytic fungi associated with palms. Mycol Res 104:1202–1212

    Article  Google Scholar 

  • García E, Alonso Á, Platas G, Sacristán S (2013) The endophytic mycobiota of Arabidopsis thaliana. Fungal Divers 60:71–89

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Hallmann J, Berg G, Schulz B (2006) Isolation procedures for endophytic microorganisms. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin Heidelberg, pp 299–319

    Chapter  Google Scholar 

  • Hoog SD, Zalar P, Ende BGVD, Gunde-Cimerman N (2005) Relation of halotolerance to human-pathogenicity in the fungal tree of life: an overview of ecology and evolution under stress. In: Gunde-Cimerman N, Oren A, Plemenitaš A (eds) Adaptation to life at high salt concentrations in archaea, bacteria, and eukarya. Springer, Netherlands, pp 371–395

    Chapter  Google Scholar 

  • Hopple JS Jr, Vilgalys R (1994) Phylogenetic relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia 86:96–107

    Article  CAS  Google Scholar 

  • Hui FKC (2016) boral – Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol Evol 7:744–750

    Article  Google Scholar 

  • Hui FKC, Taskinen S, Pledger S et al (2015) Model-based approaches to unconstrained ordination. Methods Ecol Evol 6:399–411

    Article  Google Scholar 

  • Kadereit G, Mucina L, Freitag H (2006) Phylogeny of Salicornioideae (Chenopodiaceae): diversification, biogeography, and evolutionary trends in leaf and flower morphology. Taxon 55:617–642

    Article  Google Scholar 

  • Kauff F, Lutzoni F (2002) Phylogeny of the Gyalectales and Ostropales (Ascomycota, Fungi): among and within order relationships based on nuclear ribosomal RNA small and large subunits. Mol Phylogenet Evol 25:138–156

    Article  CAS  PubMed  Google Scholar 

  • Kõljalg U, Nilsson RH, Abarenkov K et al (2013) Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol 22:5271–5277

    Article  PubMed  Google Scholar 

  • Maciá-Vicente JG, Jansson H-B, Abdullah SK et al (2008a) Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiol Ecol 64:90–105

  • Maciá-Vicente JG, Jansson H-B, Mendgen K, Lopez-Llorca LV (2008b) Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Can J Microbiol 54:600–609

  • Maciá-Vicente JG, Rosso LC, Ciancio A et al (2009) Colonisation of barley roots by endophytic Fusarium equiseti and Pochonia chlamydosporia: Effects on plant growth and disease. Ann Appl Biol 155:391–401

  • Maciá-Vicente JG, Ferraro V, Burruano S, Lopez-Llorca LV (2012) Fungal assemblages associated with roots of halophytic and non-halophytic plant species vary differentially along a salinity gradient. Microb Ecol 64:668–679

    Article  PubMed  Google Scholar 

  • Madelin TM (1987) The effect of a surfactant in media for the enumeration, growth and identification of airborne fungi. J Appl Bacteriol 63:47–52

    Article  CAS  PubMed  Google Scholar 

  • Magurran AE, McGill BJ (2011) Biological Diversity: Frontiers in Measurement and Assessment. Oxford University Press, Oxford

    Google Scholar 

  • Mandyam K, Jumpponen A (2014) Unraveling the dark septate endophyte functions: insights from the Arabidopsis model. In: Gange AC, Verma VC (eds) Advances in endophytic research. Springer, India, pp 115–141

  • Márquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513–515

    Article  PubMed  Google Scholar 

  • Mohamed DJ, Martiny JB (2011) Patterns of fungal diversity and composition along a salinity gradient. ISME J 5:379–388

    Article  PubMed  Google Scholar 

  • Nilsson RH, Tedersoo L, Ryberg M et al (2015) A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes Environ 30:145–150

    Article  PubMed  PubMed Central  Google Scholar 

  • O’Donnell K, Cigelnik E, Nirenberg HI (1998) Molecular systematics and phylogeography of the Gibberella fujikuroi species complex. Mycologia 90:465–493

  • Petrini O, Fisher PJ (1986) Fungal endophytes in Salicornia perennis. Trans Br Mycol Soc 87:647–651

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  PubMed  Google Scholar 

  • Porras-Alfaro A, Herrera J, Sinsabaugh RL et al (2008) Novel root fungal consortium associated with a dominant desert grass. Appl Environ Microbiol 74:2805–2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porras-Alfaro A, Liu K-L, Kuske CR, Xie G (2014) From genus to phylum: large-subunit and internal transcribed spacer rRNA operon regions show similar classification accuracies influenced by database composition. Appl Environ Microbiol 80:829–840

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiang X, Zechmann B, Reitz MU et al (2012) The mutualistic fungus Piriformospora indica colonizes Arabidopsis roots by inducing an endoplasmic reticulum stress–triggered caspase-dependent cell death. Plant Cell 24:794–809

  • R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rämä T, Nordén J, Davey ML et al (2014) Fungi ahoy! Diversity on marine wooden substrata in the high north. Fungal Ecol 8:46–58

    Article  Google Scholar 

  • Redman RS, Kim YO, Woodward CJDA et al (2011) Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE 6:e14823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98

  • Rice P, Longden I, Bleasby A et al (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  CAS  PubMed  Google Scholar 

  • Roda JJ, Díaz G, Torres P (2008) Spatial distribution of arbuscular mycorrhizal fungi in the rhizosphere of the salt marsh plant Inula crithmoides L. along a salinity gradient. Arid Land Res Manag 22:310–319

  • Rodriguez R, Redman R (2008) More than 400 million years of evolution and some plants still can’t make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot 59:1109–1114

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RJ, Henson J, Van Volkenburgh E et al (2008) Stress tolerance in plants via habitat-adapted symbiosis. ISME J 2:404–416

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholtysik A, Unterseher M, Otto P, Wirth C (2013) Spatio-temporal dynamics of endophyte diversity in the canopy of European ash (Fraxinus excelsior). Mycol Prog 12:291–304

  • Suetrong S, Schoch CL, Spatafora JW et al (2009) Molecular systematics of the marine Dothideomycetes. Stud Mycol 64:155–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Wang Q, Lu X et al (2011) Endophytic fungal community in stems and leaves of plants from desert areas in China. Mycol Prog 11:781–790

    Article  Google Scholar 

  • Tanaka A, Takemoto D, Chujo T, Scott B (2012) Fungal endophytes of grasses. Curr Opin Plant Biol 15:462–468

    Article  CAS  PubMed  Google Scholar 

  • Unterseher M, Petzold A, Schnittler M (2012) Xerotolerant foliar endophytic fungi of Populus euphratica. Fungal Divers 54:133–142

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401

    Article  Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Naumann U, Wright ST, Warton DI (2012) mvabund – an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–474

  • White TJ, Bruns T, Lee S et al (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Zak JC, Willig MR (2004) Fungal biodiversity patterns. In: Biodiversity of fungi: Inventory and monitoring methods. Elsevier, Academic Press, Amsterdam, pp 59–75

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank Dr. François McNicoll for his constructive comments that helped to improve the manuscript. This study was supported by LOEWE (Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz) of the state of Hesse and was conducted within the framework of the Cluster for Integrative Fungal Research (IPF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose G. Maciá-Vicente.

Additional information

Section Editor: Dominik Begerow

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Chemical characteristics of soils sampled in this study (XLSX 10 kb)

Table S2

Accession numbers, OTU clustering, and taxonomic annotations of individual sequences from fungal isolates and clones (XLSX 40 kb)

Figure S1

Sampling site during collection events. The pictures depict the site in May (a), June (b), and September (c) of 2013, and show the position of the populations of Salicornia patula (Sp) collected at each time point and of Arthrocnemum macrostachyum (Am) collected in September only (GIF 156 kb)

High-resolution image (TIF 2452 kb)

Figure S2

Amplification of DNA from S. patula and A. macrostachyum roots prior to cloning, using either fungal-specific primers (ITS1F and ITS4) or universal primers (ITS1 and ITS4), to test the quality of the extracts. Each lane corresponds to a PCR amplification from an independent root DNA extract (GIF 22 kb)

High-resolution image (TIF 1368 kb)

Figure S3

Fungal endophyte richness in Salicornia patula and Arthrocnemum macrostachyum roots at the September sampling. Sample-based accumulation curves show the observed OTU richness and extrapolated richness for S. patula (black lines) and A. macrostachyum (gray lines), as calculated by bootstrap, first-order jackknife, and Chao estimators (PDF 8 kb)

Methods S1

(ZIP 15.4 kb)

Methods S2

(ZIP 8.14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maciá-Vicente, J.G., Nau, T. & Piepenbring, M. Low diversity and abundance of root endophytes prevail throughout the life cycle of an annual halophyte. Mycol Progress 15, 1303–1311 (2016). https://doi.org/10.1007/s11557-016-1241-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11557-016-1241-5

Keywords

Navigation