Skip to main content
Log in

Improved discrete Tchebichef transform approximations for efficient image compression

  • Research
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

In recent years, the Discrete Tchebichef Transform (DTT) has gained popularity as a signal processing tool for image and video compression due to its efficient coding and decorrelation properties. However, in the context of real-time applications and embedded systems, it is critical to develop approximate algorithms with reduced complexity and energy consumption. While three DTT approximations have been proposed to date, there is still room for further improvements. To address this gap, we propose two new low-complexity DTT approximations that employ a modified deviation metric, resulting in better compression efficiency and reduced complexity. We validate our proposed methods by implementing them on the Xilinx Virtex-6 XC6VSX475T-1FF1759-2 Field Programmable Gate Array (FPGA) through rapid prototyping. Our proposed transformations exhibit superior performance in terms of hardware resources and energy consumption, particularly for 1D 8 inputs. Furthermore, compared to the state-of-the-art DTT approximations in image compression, our proposed transformations demonstrate a quality gain of up to 2 dB. Overall, our proposed approximations provide a promising trade-off between image quality, hardware resources, and energy consumption, making them ideal for real-time applications and embedded systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Aliouat, A., Kouadria, N., Maimour, M., Harize, S., Doghmane, N.: Region-of-interest based video coding strategy for rate/energy-constrained smart surveillance systems using wmsns. Ad Hoc Netw. 140, 103076 (2023)

    Article  Google Scholar 

  2. Bateman, H.: Higher Transcendental Functions [Volumes i–iii], vol. 1. McGraw-Hill Book Company (1953)

    Google Scholar 

  3. Blahut, R.E.: Fast Algorithms for Signal Processing. Cambridge University Press (2010)

    Book  Google Scholar 

  4. Brahimi, N., Bouden, T., Brahimi, T., Boubchir, L.: A novel and efficient 8-point dct approximation for image compression. Multimed. Tools Appl. 79(11), 7615–7631 (2020)

    Article  Google Scholar 

  5. Britanak, V., Yip, P.C., Rao, K.R.: Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations. Elsevier (2010)

    Google Scholar 

  6. Chen, B., Coatrieux, G., Wu, J., Dong, Z., Coatrieux, J.L., Shu, H.: Fast computation of sliding discrete tchebichef moments and its application in duplicated regions detection. IEEE Trans. Signal Process. 63(20), 5424–5436 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Cintra, R.J., Bayer, F.M.: A dct approximation for image compression. IEEE Signal Process. Lett. 18(10), 579–582 (2011)

    Article  ADS  Google Scholar 

  8. Cintra, R.J., Bayer, F.M., Tablada, C.: low complexity the 8-point dct approximations based on integer functions. Signal Process. 99, 201–214 (2014)

    Article  Google Scholar 

  9. Coutinho, V.A., Cintra, R.J., Bayer, F.M., Oliveira, P.A., Oliveira, R.S., Madanayake, A.: Pruned discrete tchebichef transform approximation for image compression. Circ. Syst. Signal Process. 37(10), 4363–4383 (2018)

    Article  MathSciNet  Google Scholar 

  10. Da Silveira, T.L., Canterle, D.R., Coelho, D.F., Coutinho, V.A., Bayer, F.M., Cintra, R.J.: A class of low-complexity dct-like transforms for image and video coding. IEEE Trans. Circu. Syst. Video Technol. (2021)

  11. Das, C., Panigrahi, S., Sharma, V.K., Mahapatra, K.: A novel blind robust image watermarking in dct domain using inter-block coefficient correlation. AEU-Int. J. Electron. Commun. 68(3), 244–253 (2014)

    Article  Google Scholar 

  12. Ding, X., Zhu, N., Li, L., Li, Y., Yang, G.: Robust localization of interpolated frames by motion-compensated frame interpolation based on an artifact indicated map and tchebichef moments. IEEE Trans. Circ. Syst. Video Technol. 29(7), 1893–1906 (2018)

    Article  Google Scholar 

  13. Ernawan, F., Abu, N.A., Suryana, N.: Tmt quantization table generation based on psychovisual threshold for image compression. In: 2013 International Conference of Information and Communication Technology (ICoICT)

  14. Ernawan, F., Kabir, M.N.: An improved watermarking technique for copyright protection based on tchebichef moments. IEEE Access 7, 151985–152003 (2019)

    Article  Google Scholar 

  15. Farsiani, S., Sodagar, A.M.: Hardware and power-efficient compression technique based on discrete tchebichef transform for neural recording microsystems. In: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3489–3492. IEEE (2020)

  16. Farsiani, S., Sodagar, A.M.: Compact agile tchebycheff transform variant for temporal compression of neural signals on brain-implantable microsystems. Integration 90, 171–182 (2023)

    Article  Google Scholar 

  17. Feig, E., Winograd, S.: Fast algorithms for the discrete cosine transform. IEEE Trans. Signal Process. 40(9), 2174–2193 (1992)

    Article  ADS  Google Scholar 

  18. Harize, S., Mefoued, A., Kouadria, N., Doghmane, N.: Hevc transforms with reduced elements bit depth. Electron. Lett. 54(22), 1278–1280 (2018)

    Article  ADS  Google Scholar 

  19. Haweel, T.I.: A new square wave transform based on the dct. Signal Process. 81(11), 2309–2319 (2001)

    Article  ADS  Google Scholar 

  20. Hou, H.: A fast recursive algorithm for computing the discrete cosine transform. IEEE Trans. Acoust. Speech Signal Process. 35(10), 1455–1461 (1987)

    Article  Google Scholar 

  21. Huang, H., Coatrieux, G., Shu, H., Luo, L., Roux, C.: Blind integrity verification of medical images. IEEE Trans. Inf Technol. Biomed. 16(6), 1122–1126 (2012)

    Article  PubMed  Google Scholar 

  22. Jridi, M., Meher, P.K.: Scalable approximate dct architectures for efficient hevc-compliant video coding. IEEE Trans. Circ. Syst. Video Technol. 27(8), 1815–1825 (2016)

    Article  Google Scholar 

  23. Jridi, M., Alfalou, A., Meher, P.K.: A generalized algorithm and reconfigurable architecture for efficient and scalable orthogonal approximation of dct. IEEE Trans. Circ. Syst. I Regul. Pap. 62(2), 449–457 (2014)

    Article  Google Scholar 

  24. Karhunen, K.: Under lineare methoden in der wahr scheinlichkeitsrechnung. Annales Academiae Scientiarun Fennicae Series A1: Mathematia Physica 47 (1947)

  25. Kiruba, M., Sumathy, V.: Register pre-allocation based folded discrete tchebichef transformation technique for image compression. Integration 60, 13–24 (2018)

    Article  Google Scholar 

  26. Kouadria, N., Mechouek, K., Messadeg, D., Doghmane, N.: Pruned discrete tchebichef transform for image coding in wireless multimedia sensor networks. AEU-Int. J. Electron. Commun. 74, 123–127 (2017)

    Article  Google Scholar 

  27. Loeffler, C., Ligtenberg, A., Moschytz, G.S.: Practical fast 1-d dct algorithms with 11 multiplications. In: International Conference on Acoustics, Speech, and Signal Processing,, pp. 988–991. IEEE (1989)

  28. Lungisani, B.A., Lebekwe, C.K., Zungeru, A.M., Yahya, A.: Image compression techniques in wireless sensor networks: a survey and comparison. IEEE Access 10, 82511–82530 (2022)

    Article  Google Scholar 

  29. Mefoued, A., Harize, S., Kouadria, N.: Efficient, low complexity 8-point discrete tchebichef transform approximation for signal processing applications. J. Franklin Inst. (2023)

  30. Mefoued, A., Kouadria, N., Harize, S., Doghmane, N.: Improving image encoding quality with a low-complexity dct approximation using 14 additions. J. Real-Time Image Proc. 20(3), 58 (2023)

    Article  Google Scholar 

  31. Mohanty, B.K.: Parallel vlsi architecture for approximate computation of discrete hadamard transform. IEEE Trans. Circ. Syst. Video Technol. 30(12), 4944–4952 (2020)

    Article  Google Scholar 

  32. Mukundan, R., Ong, S., Lee, P.A.: Image analysis by tchebichef moments. IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  33. of Southern California, U.: The usc-sipi image database \(\langle\)http://sipi.usc.edu/database/\(\rangle\). Signal Image Process. Inst. (2011)

  34. Oliveira, P.A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Madanayake, A.: A discrete tchebichef transform approximation for image and video coding. IEEE Signal Process. Lett. 22(8), 1137–1141 (2015)

    Article  ADS  Google Scholar 

  35. Oliveira, P.A., Cintra, R.J., Bayer, F.M., Kulasekera, S., Madanayake, A.: Low-complexity image and video coding based on an approximate discrete tchebichef transform. IEEE Trans. Circ. Syst. Video Technol. 27(5), 1066–1076 (2016)

    Article  Google Scholar 

  36. Paim, G., Soares, L.B., Ferreira, R., Costa, E., Bampi, S.: Pruning and approximation of coefficients for power-efficient 2-d discrete tchebichef transform. In: 2017 15th IEEE International New Circuits and Systems Conference (NEWCAS), pp. 25–28. IEEE (2017)

  37. Paim, G., Rocha, L.M.G., Santana, G.M., Soares, L.B., da Costa, E.A.C., Bampi, S.: Power-, area-, and compression-efficient eight-point approximate 2-d discrete tchebichef transform hardware design combining truncation pruning and efficient transposition buffers. IEEE Trans. Circ. Syst. I Regul. Pap. 66(2), 680–693 (2018)

    Article  Google Scholar 

  38. Paim, G., Santana, G.M., Rocha, L.M.G., Soares, L.B., da Costa, E.A.C., Bampi, S.: Exploring approximations in 4-and 8-point dtt hardware architectures for low-power image compression. Analog Integr. Circ. Sig. Process 97(3), 503–514 (2018)

    Article  Google Scholar 

  39. Paim, G., Rocha, L.M.G., Amrouch, H., da Costa, E.A.C., Bampi, S., Henkel, J.: A cross-layer gate-level-to-application co-simulation for design space exploration of approximate circuits in hevc video encoders. IEEE Trans. Circ. Syst. Video Technol. 30(10), 3814–3828 (2019)

    Article  Google Scholar 

  40. Prattipati, S., Ishwar, S., Swamy, M., Meher, P.K.: A fast 8\(\times\) 8 integer tchebichef transform and comparison with integer cosine transform for image compression. In: 2013 IEEE 56th international midwest symposium on circuits and systems (MWSCAS), pp. 1294–1297. IEEE (2013)

  41. Radünz, A.P., da Silveira, T.L., Bayer, F.M., Cintra, R.J.: Data-independent low-complexity klt approximations for image and video coding. Signal Process.: Image Commun. 101, 116585 (2022)

    Google Scholar 

  42. Seber, G.A.: A Matrix Handbook for Statisticians. John Wiley & Sons (2008)

    Google Scholar 

  43. Senapati, R.K., Pati, U.C., Mahapatra, K.K.: Reduced memory, low complexity embedded image compression algorithm using hierarchical listless discrete tchebichef transform. IET Image Proc. 8(4), 213–238 (2014)

    Article  Google Scholar 

  44. Suhail, M.A., Obaidat, M.S.: Digital watermarking-based dct and jpeg model. IEEE Trans. Instrum. Meas. 52(5), 1640–1647 (2003)

    Article  ADS  Google Scholar 

  45. Wallace, G.K.: The jpeg still picture compression standard. IEEE Trans. Consum. Electron. 38(1), xviii–ivxxx (1992)

  46. Zhang, H., Dai, X., Sun, P., Zhu, H., Shu, H.: Symmetric image recognition by tchebichef moment invariants. In: 2010 IEEE International Conference on Image Processing, pp. 2273–2276. IEEE (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelkader Mefoued.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mefoued, A., Kouadria, N., Harize, S. et al. Improved discrete Tchebichef transform approximations for efficient image compression. J Real-Time Image Proc 21, 12 (2024). https://doi.org/10.1007/s11554-023-01390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11554-023-01390-9

Keywords

Navigation