Skip to main content
Log in

Accurate and robust tracking of rigid objects in real time

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

We present the shape model object tracker, which is accurate, robust, and real-time capable on a standard CPU. The tracker has a failure mode detection, is robust to nonlinear illumination changes, and can cope with occlusions. It uses subpixel-precise image edges to track roughly rigid objects with high accuracy and is virtually drift-free even for long sequences. Furthermore, it is inherently capable of object re-detection when tracking fails. To evaluate the accuracy, robustness, and efficiency of the tracker precisely, we present a challenging new tracking dataset with pixel-precise ground truth. The precise ground-truth labels are created automatically from the photo-realistic synthetic VIPER dataset. The tracker is thoroughly evaluated against the state of the art through a number of qualitative and quantitative experiments. It is able to perform on par with the current state-of-the-art deep-learning trackers, but is at least 45 times faster, even without using a GPU. The efficiency and low memory consumption of the tracker are validated in further experiments that are conducted on an embedded device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akin, O., Erdem, E., Erdem, A., Mikolajczyk, K.: Deformable part-based tracking by coupled global and local correlation filters. J. Vis. Commun. Image Represent. 38, 763–774 (2016). https://doi.org/10.1016/j.jvcir.2016.04.018

    Article  Google Scholar 

  2. Babu, R.V., Suresh, S., Makur, A.: Online adaptive radial basis function networks for robust object tracking. Comput. Vis. Image Understand. 114(3), 297–310 (2010). https://doi.org/10.1016/j.cviu.2009.10.004

    Article  Google Scholar 

  3. Ballard, D.H.: Generalizing the hough transform to detect arbitrary shapes. Pattern Recognit. 13(2), 111–122 (1981). https://doi.org/10.1016/0031-3203(81)90009-1

    Article  MATH  Google Scholar 

  4. Bertinetto, L., Valmadre, J., Golodetz, S., Miksik, O., Torr, P.H.S.: Staple: Complementary learners for real-time tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1401–1409 (2016). https://doi.org/10.1109/CVPR.2016.156

  5. Borgefors, G.: Hierarchical chamfer matching: a parametric edge matching algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 10(6), 849–865 (1988). https://doi.org/10.1109/34.9107

    Article  Google Scholar 

  6. Böttger, T., Eisenhofer, C.: Efficiently tracking extremal regions in multichannel images. In: 8th International Conference of Pattern Recognition Systems (ICPRS), pp. 6–14. Institution of Engineering and Technology (2017). https://doi.org/10.1049/cp.2017.0143

  7. Böttger, T., Follmann, P.: The benefits of evaluating tracker performance using pixel-wise segmentations. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1983–1991 (2017). https://doi.org/10.1109/ICCVW.2017.232

  8. Böttger, T., Follmann, P., Fauser, M.: Measuring the accuracy of object detectors and trackers. In: German Conference on Pattern Recognition (GCPR), pp. 415–426 (2017). https://doi.org/10.1007/978-3-319-66709-6_33

  9. Böttger, T.: Real-time maximally stable homogeneous regions. J. Real-time Image Process. (2020). https://doi.org/10.1007/s11554-020-00951-6

  10. Böttger, T., Ulrich, M., Steger, C.: Subpixel-precise tracking of rigid objects in real-time. In: 20th Scandinavian Conference on Image Analysis (SCIA), pp. 54–65 (2017). https://doi.org/10.1007/978-3-319-59126-1_5

  11. Bouguet, J.Y., et al.: Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corp. 5(1–10), 4 (2001)

    Google Scholar 

  12. Choi, J., Chang, H.J., Yun, S., Fischer, T., Demiris, Y., Choi, J.Y.: Attentional correlation filter network for adaptive visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4828–4837 (2017).https://doi.org/10.1109/CVPR.2017.513

  13. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–575 (2003). https://doi.org/10.1109/TPAMI.2003.1195991

    Article  Google Scholar 

  14. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Understand. 61(1), 38–59 (1995). https://doi.org/10.1006/cviu.1995.1004

    Article  Google Scholar 

  15. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: ECO: efficient convolution operators for tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6931–6939 (2017). https://doi.org/10.1109/CVPR.2017.733

  16. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Accurate scale estimation for robust visual tracking. In: British Machine Vision Conference (BMVC). BMVA Press (2014)

  17. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: IEEE International Conference on Computer Vision (ICCV), pp. 4310–4318 (2015). https://doi.org/10.1109/ICCV.2015.490

  18. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017). https://doi.org/10.1109/TPAMI.2016.2609928

    Article  Google Scholar 

  19. Danelljan, M., Robinson, A., Khan, F.S., Felsberg, M.: Beyond correlation filters: Learning continuous convolution operators for visual tracking. In: European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol. 9909, pp. 472–488. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-46454-1_29

  20. Gundogdu, E., Alatan, A.A.: Good features to correlate for visual tracking. IEEE Trans. Image Process. 27(5), 2526–2540 (2018). https://doi.org/10.1109/TIP.2018.2806280

    Article  MathSciNet  MATH  Google Scholar 

  21. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015). https://doi.org/10.1109/TPAMI.2014.2345390

    Article  Google Scholar 

  22. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.P.: Exploiting the circulant structure of tracking-by-detection with kernels. In: European Conference on Computer Vision (ECCV), pp. 702–715 (2012). https://doi.org/10.1007/978-3-642-33765-9_50

  23. Hong, S., You, T., Kwak, S., Han, B.: Online tracking by learning discriminative saliency map with convolutional neural network. In: International Conference on Machine Learning (ICML), pp. 597–606 (2015)

  24. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012). https://doi.org/10.1109/T.2011.239

    Article  Google Scholar 

  25. Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82(1), 35–45 (1960). https://doi.org/10.1115/1.3662552

    Article  MathSciNet  Google Scholar 

  26. Kristan, M., et al.: The visual object tracking VOT2017 challenge results. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1949–1972 (2017). https://doi.org/10.1109/ICCVW.2017.230

  27. Kristan, M., Matas, J., Leonardis, A., Felsberg, M., Cehovin, L., Fernández, G., Vojír, T., Häger, G., Nebehay, G., Pflugfelder, R.P.: The visual object tracking VOT2015 challenge results. In: IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 564–586 (2015). https://doi.org/10.1109/ICCVW.2015.79

  28. Lamdan, Y., Schwartz, J.T., Wolfson, H.J.: Affine invariant model-based object recognition. IEEE Trans. Robot. Autom. 6(5), 578–589 (1990). https://doi.org/10.1109/70.62047

    Article  Google Scholar 

  29. Lepetit, V., Fua, P.: Monocular model-based 3D tracking of rigid objects: A survey. Found. Trends Comput. Graph. Vis. (2005). https://doi.org/10.1561/0600000001

  30. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006). https://doi.org/10.1109/TPAMI.2006.188

    Article  Google Scholar 

  31. Li, H., Li, Y., Porikli, F.: Deeptrack: Learning discriminative feature representations online for robust visual tracking. IEEE Trans. Image Process. 25(4), 1834–1848 (2016). https://doi.org/10.1109/TIP.2015.2510583

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, S., Yeung, D.: Visual object tracking for unmanned aerial vehicles: A benchmark and new motion models. In: Conference on Artificial Intelligence (AAAI), pp. 4140–4146. AAAI Press (2017)

  33. Lukezic, A., Vojír, T., Zajc, L.C., Matas, J., Kristan, M.: Discriminative correlation filter tracker with channel and spatial reliability. Int. J. Comput. Vis. 126(7), 671–688 (2018). https://doi.org/10.1007/s11263-017-1061-3

    Article  MathSciNet  Google Scholar 

  34. Matthews, I.A., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 810–815 (2004). https://doi.org/10.1109/TPAMI.2004.16

    Article  Google Scholar 

  35. Membarth, R., Reiche, O., Hannig, F., Teich, J., Körner, M., Eckert, W.: Hipacc: A domain-specific language and compiler for image processing. IEEE Trans. Parallel Distrib. Syst. 27(1), 210–224 (2016). https://doi.org/10.1109/TPDS.2015.2394802

    Article  Google Scholar 

  36. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: European Conference on Computer Vision (ECCV), Lecture Notes in Computer Science, vol. 9905, pp. 445–461. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-46448-0_27

  37. Mueller, M., Smith, N., Ghanem, B.: Context-aware correlation filter tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1387–1395 (2017). https://doi.org/10.1109/CVPR.2017.152

  38. Müller, M., Bibi, A., Giancola, S., Al-Subaihi, S., Ghanem, B.: Trackingnet: A large-scale dataset and benchmark for object tracking in the wild. In: European Conference on Computer Vision (ECCV), pp. 310–327 (2018). https://doi.org/10.1007/978-3-030-01246-5_19

  39. Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)

    Article  MathSciNet  Google Scholar 

  40. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4293–4302 (2016). https://doi.org/10.1109/CVPR.2016.465

  41. Olson, C.F., Huttenlocher, D.P.: Automatic target recognition by matching oriented edge pixels. IEEE Trans. Image Process. 6(1), 103–113 (1997). https://doi.org/10.1109/83.552100

    Article  Google Scholar 

  42. Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool, L.J.V., Gross, M.H., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 724–732 (2016). https://doi.org/10.1109/CVPR.2016.85

  43. Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.: Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines. ACM SIGPLAN Not. 48(6), 519–530 (2013). https://doi.org/10.1145/2499370.2462176

    Article  Google Scholar 

  44. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: IEEE International Conference on Computer Vision (ICCV), pp. 2232–2241 (2017). https://doi.org/10.1109/ICCV.2017.243

  45. Roffo, G., Melzi, S.: Online feature selection for visual tracking. In: British Machine Vision Conference (BMVC). BMVA Press (2016)

  46. Rucklidge, W.: Efficiently locating objects using the hausdorff distance. Int. J. Comput. Vis. 24(3), 251–270 (1997). https://doi.org/10.1023/A:1007975324482

    Article  Google Scholar 

  47. Smeulders, A.W.M., Chu, D.M., Cucchiara, R., Calderara, S., Dehghan, A., Shah, M.: Visual tracking: an experimental survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1442–1468 (2014). https://doi.org/10.1109/TPAMI.2013.230

    Article  Google Scholar 

  48. Song, Y., Ma, C., Gong, L., Zhang, J., Lau, R.W.H., Yang, M.: CREST: convolutional residual learning for visual tracking. In: IEEE International Conference on Computer Vision (ICCV), pp. 2574–2583 (2017). https://doi.org/10.1109/ICCV.2017.279

  49. Steger, C.: An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998). https://doi.org/10.1109/34.659930

    Article  Google Scholar 

  50. Steger, C.: Similarity measures for occlusion, clutter, and illumination invariant object recognition. In: DAGM-Symposium, Lecture Notes in Computer Science, vol. 2191, pp. 148–154. Springer, Berlin (2001). https://doi.org/10.1007/3-540-45404-7_20

  51. Steger, C.: Occlusion, clutter, and illumination invariant object recognition. Int. Arch. Photogram. Remote Sens. 34(3/A), 345–350 (2002)

  52. Steger, C., Ulrich, M., Wiedemann, C.: Machine Vision Algorithms and Applications, 2nd edn. Wiley-VCH, Weinheim (2018)

    Google Scholar 

  53. Sui, Y., Zhang, Z., Wang, G., Tang, Y., Zhang, L.: Real-time visual tracking: Promoting the robustness of correlation filter learning. In: European Conference on Computer Vision (ECCV), pp. 662–678 (2016). https://doi.org/10.1007/978-3-319-46484-8_40

  54. Sun, C., Wang, D., Lu, H., Yang, M.H.: Learning spatial-aware regressions for visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8962–8970 (2018)

  55. Ulrich, M., Steger, C.: Empirical performance evaluation of object recognition methods. Empirical Evaluation Methods in Computer Vision pp. 62–76 (2001)

  56. Ulrich, M., Steger, C.: Performance evaluation of 2d object recognition techniques. Technical Report PF–2002–01, Lehrstuhl für Photogrammetrie und Fernerkundung, Technische Universität München (2002)

  57. Ulrich, M., Steger, C.: System and methods for automatic parameter determination in machine vision (2011). US Patent 7,953,290

  58. Ulrich, M., Steger, C., Baumgartner, A.: Real-time object recognition using a modified generalized hough transform. Pattern Recognit. 36(11), 2557–2570 (2003). https://doi.org/10.1016/S0031-3203(03)00169-9

    Article  MATH  Google Scholar 

  59. Valmadre, J., Bertinetto, L., Henriques, J.F., Tao, R., Vedaldi, A., Smeulders, A.W.M., Torr, P.H.S., Gavves, E.: Long-term tracking in the wild: a benchmark. In: European Conference on Computer Vision (ECCV), pp. 692–707 (2018). https://doi.org/10.1007/978-3-030-01219-9_41

  60. Vojir, T., Matas, J.: Pixel-wise object segmentations for the VOT 2016 dataset. Research Report CTU–CMP–2017–01, Center for Machine Perception, Czech Technical University, Prague, Czech Republic (2017)

  61. Wu, Y., Lim, J., Yang, M.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015). https://doi.org/10.1109/TPAMI.2014.2388226

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Böttger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böttger, T., Steger, C. Accurate and robust tracking of rigid objects in real time. J Real-Time Image Proc 18, 493–510 (2021). https://doi.org/10.1007/s11554-020-00978-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-020-00978-9

Keywords

Navigation