Skip to main content
Log in

T1-weighted images-based radiomics for structural lesions evaluation in patients with suspected axial spondyloarthritis

  • Computed Tomography
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the feasibility of radiomics based on T1-weighted images (T1WI) for assessing sacroiliac joint (SIJ) structural lesions in patients with suspected axial spondyloarthritis (axSpA).

Materials and methods

A total of 266 patients with clinical suspicion of axSpA between December 2016 and January 2022 were enrolled. Structural lesions were assessed on low-dose CT (ldCT) and MRI, respectively. Radiomic features, extracted from SIJ T1WI, were included to generate the radiomics model. The performance of the radiomics model was evaluated using receiver operating characteristic (ROC) curve. Furthermore, point-biserial correlation analysis was used to interpret the associations between the radiomic feature and structural lesions.

Results

Using ldCT as the reference standard, the radiomics model showed favorable performance for detecting positive global structural lesions in the training cohort (AUC, 0.82 [95% CI: 0.76, 0.88]) and validation cohort (AUC, 0.82 [95% CI: 0.72, 0.91]. Experienced MRI raters yielded predictive AUCs of 0.73 (95% CI: 0.67, 0.79), and 0.74 (95% CI: 0.66, 0.83) in the training and validation cohort, respectively. The seven radiomic features included in the radiomics model showed significant correlation with different kinds of structural lesions (P all < 0.05). Among them, Wavelet.LHL_firstorder_90Percentile showed the strongest association with fat lesion (r = 0.48, P < 0.05).

Conclusion

The radiomics analysis with T1WI could effectively detect SIJ structural lesions and achieved expert-level performance. Each radiomic feature was correlated with different structural lesions significantly, which might inform radiomic-based applications for axSpA intelligent diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van der Linden S, Valkenburg HA, Cats A (1984) Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum 27:361–368. https://doi.org/10.1002/art.1780270401

    Article  PubMed  Google Scholar 

  2. Rudwaleit M, van der Heijde D, Landewe R, Listing J, Akkoc N, Brandt J et al (2009) The development of assessment of SpondyloArthritis international society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis 68:777–783. https://doi.org/10.1136/ard.2009.108233

    Article  CAS  PubMed  Google Scholar 

  3. Lambert RG, Bakker PA, van der Heijde D, Weber U, Rudwaleit M, Hermann KG et al (2016) Defining active sacroiliitis on MRI for classification of axial spondyloarthritis: update by the ASAS MRI working group. Ann Rheum Dis 75:1958–1963. https://doi.org/10.1136/annrheumdis-2015-208642

    Article  PubMed  Google Scholar 

  4. Maksymowych WP, Lambert RG, Ostergaard M, Pedersen SJ, Machado PM, Weber U et al (2019) MRI lesions in the sacroiliac joints of patients with spondyloarthritis: an update of definitions and validation by the ASAS MRI working group. Ann Rheum Dis 78:1550–1558. https://doi.org/10.1136/annrheumdis-2019-215589

    Article  PubMed  Google Scholar 

  5. Mandl P, Navarro-Compan V, Terslev L, Aegerter P, van der Heijde D, D’Agostino MA et al (2015) EULAR recommendations for the use of imaging in the diagnosis and management of spondyloarthritis in clinical practice. Ann Rheum Dis 74:1327–1339. https://doi.org/10.1136/annrheumdis-2014-206971

    Article  CAS  PubMed  Google Scholar 

  6. Sieper J, Rudwaleit M, Baraliakos X, Brandt J, Braun J, Burgos-Vargas R et al (2009) The Assessment of SpondyloArthritis international Society (ASAS) handbook: a guide to assess spondyloarthritis. Ann Rheum Dis 68(Suppl 2):ii1–ii44. https://doi.org/10.1136/ard.2008.104018

    Article  PubMed  Google Scholar 

  7. Eshed I, Diekhoff T, Hermann KGA (2023) Is it time to move on from pelvic radiography as the first-line imaging modality for suspected sacroiliitis? Curr Opin Rheumatol 35:219–225. https://doi.org/10.1097/BOR.0000000000000925

    Article  PubMed  Google Scholar 

  8. Diekhoff T, Eshed I, Radny F, Ziegeler K, Proft F, Greese J et al (2022) Choose wisely: imaging for diagnosis of axial spondyloarthritis. Ann Rheum Dis 81:237–242. https://doi.org/10.1136/annrheumdis-2021-220136

    Article  CAS  PubMed  Google Scholar 

  9. Bakker PA, van den Berg R, Lenczner G, Thevenin F, Reijnierse M, Claudepierre P et al (2017) Can we use structural lesions seen on MRI of the sacroiliac joints reliably for the classification of patients according to the ASAS axial spondyloarthritis criteria? Data from the DESIR cohort. Ann Rheum Dis 76:392–398. https://doi.org/10.1136/annrheumdis-2016-209405

    Article  PubMed  Google Scholar 

  10. Poddubnyy D, Gaydukova I, Hermann KG, Song IH, Haibel H, Braun J et al (2013) Magnetic resonance imaging compared to conventional radiographs for detection of chronic structural changes in sacroiliac joints in axial spondyloarthritis. J Rheumatol 40:1557–1565. https://doi.org/10.3899/jrheum.130141

    Article  PubMed  Google Scholar 

  11. Ye L, Liu Y, Xiao Q, Dong L, Wen C, Zhang Z et al (2020) MRI compared with low-dose CT scanning in the diagnosis of axial spondyloarthritis. Clin Rheumatol 39:1295–1303. https://doi.org/10.1007/s10067-019-04824-7

    Article  PubMed  Google Scholar 

  12. Diekhoff T, Hermann KG, Greese J, Schwenke C, Poddubnyy D, Hamm B et al (2017) Comparison of MRI with radiography for detecting structural lesions of the sacroiliac joint using CT as standard of reference: results from the SIMACT study. Ann Rheum Dis 76:1502–1508. https://doi.org/10.1136/annrheumdis-2016-210640

    Article  PubMed  Google Scholar 

  13. Bressem KK, Adams LC, Proft F, Hermann KGA, Diekhoff T, Spiller L et al (2022) Deep learning detects changes indicative of axial spondyloarthritis at MRI of sacroiliac joints. Radiology 305:655–665. https://doi.org/10.1148/radiol.212526

    Article  PubMed  Google Scholar 

  14. Jiang J, Wei J, Zhu Y, Wei L, Wei X, Tian H et al (2023) Clot-based radiomics model for cardioembolic stroke prediction with CT imaging before recanalization: a multicenter study. Eur Radiol 33:970–980. https://doi.org/10.1007/s00330-022-09116-4

    Article  PubMed  Google Scholar 

  15. Alvarez-Jimenez C, Sandino AA, Prasanna P, Gupta A, Viswanath SE, Romero E (2020) Identifying cross-scale associations between radiomic and pathomic signatures of non-small cell lung cancer subtypes: preliminary results. Cancers (Basel). https://doi.org/10.3390/cancers12123663

    Article  PubMed  Google Scholar 

  16. Chaddad A, Kucharczyk MJ, Niazi T (2018) Multimodal radiomic features for the predicting gleason score of prostate cancer. Cancers (Basel). https://doi.org/10.3390/cancers10080249

    Article  PubMed  Google Scholar 

  17. Bitencourt AGV, Gibbs P, Rossi Saccarelli C, Daimiel I, Lo Gullo R, Fox MJ et al (2020) MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer. EbioMedicine 61:103042. https://doi.org/10.1016/j.ebiom.2020.103042

    Article  PubMed  PubMed Central  Google Scholar 

  18. van Voorst H, Bruggeman AAE, Yang W, Andriessen J, Welberg E, Dutra BG et al (2022) Thrombus radiomics in patients with anterior circulation acute ischemic stroke undergoing endovascular treatment. J Neurointerv Surg. https://doi.org/10.1136/jnis-2022-019085

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ye L, Miao S, Xiao Q, Liu Y, Tang H, Li B et al (2022) A predictive clinical-radiomics nomogram for diagnosing of axial spondyloarthritis using MRI and clinical risk factors. Rheumatology (Oxford) 61:1440–1447. https://doi.org/10.1093/rheumatology/keab542

    Article  PubMed  Google Scholar 

  20. Tenorio APM, Faleiros MC, Junior JRF, Dalto VF, Assad RL, Louzada-Junior P et al (2020) A study of MRI-based radiomics biomarkers for sacroiliitis and spondyloarthritis. Int J Comput Assist Radiol Surg 15:1737–1748. https://doi.org/10.1007/s11548-020-02219-7

    Article  PubMed  Google Scholar 

  21. Tenorio APM, Ferreira-Junior JR, Dalto VF, Faleiros MC, Assad RL, Louzada-Junior P et al (2022) Radiomic quantification for MRI assessment of sacroiliac joints of patients with spondyloarthritis. J Digit Imaging 35:29–38. https://doi.org/10.1007/s10278-021-00559-7

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ziegeler K, Kreutzinger V, Diekhoff T, Roehle R, Poddubnyy D, Pumberger M et al (2021) Impact of age, sex, and joint form on degenerative lesions of the sacroiliac joints on CT in the normal population. Sci Rep 11:5903. https://doi.org/10.1038/s41598-021-85303-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zwanenburg A, Vallieres M, Abdalah MA, Aerts H, Andrearczyk V, Apte A et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338. https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

  24. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  25. Maksymowych WP, Pedersen SJ, Weber U, Baraliakos X, Machado PM, Eshed I et al (2020) Central reader evaluation of MRI scans of the sacroiliac joints from the ASAS classification cohort: discrepancies with local readers and impact on the performance of the ASAS criteria. Ann Rheum Dis 79:935–942. https://doi.org/10.1136/annrheumdis-2020-217232

    Article  PubMed  Google Scholar 

  26. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A et al (2019) Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin 69:127–157. https://doi.org/10.3322/caac.21552

    Article  PubMed  PubMed Central  Google Scholar 

  27. Faleiros MC, Nogueira-Barbosa MH, Dalto VF, Junior JRF, Tenorio APM, Luppino-Assad R et al (2020) Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging. Adv Rheumatol 60:25. https://doi.org/10.1186/s42358-020-00126-8

    Article  PubMed  Google Scholar 

  28. Joo YB, Baek IW, Park YJ, Park KS, Kim KJ (2020) Machine learning-based prediction of radiographic progression in patients with axial spondyloarthritis. Clin Rheumatol 39:983–991. https://doi.org/10.1007/s10067-019-04803-y

    Article  PubMed  Google Scholar 

  29. Bressem KK, Vahldiek JL, Adams L, Niehues SM, Haibel H, Rodriguez VR et al (2021) Deep learning for detection of radiographic sacroiliitis: achieving expert-level performance. Arthritis Res Ther 23:106. https://doi.org/10.1186/s13075-021-02484-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee KH, Choi ST, Lee GY, Ha YJ, Choi SI (2021) Method for diagnosing the bone marrow edema of sacroiliac joint in patients with axial spondyloarthritis using magnetic resonance image analysis based on deep learning. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11071156

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lin KYY, Peng C, Lee KH, Chan SCW, Chung HY (2022) Deep learning algorithms for magnetic resonance imaging of inflammatory sacroiliitis in axial spondyloarthritis. Rheumatology (Oxford) 61:4198–4206. https://doi.org/10.1093/rheumatology/keac059

    Article  PubMed  Google Scholar 

  32. Devauchelle-Pensec V, D’Agostino MA, Marion J, Lapierre M, Jousse-Joulin S, Colin D et al (2012) Computed tomography scanning facilitates the diagnosis of sacroiliitis in patients with suspected spondylarthritis: results of a prospective multicenter French cohort study. Arthritis Rheum 64:1412–1419. https://doi.org/10.1002/art.33466

    Article  PubMed  Google Scholar 

  33. Orlhac F, Lecler A, Savatovski J, Goya-Outi J, Nioche C, Charbonneau F et al (2021) How can we combat multicenter variability in MR radiomics? Validation of a correction procedure. Eur Radiol 31:2272–2280. https://doi.org/10.1007/s00330-020-07284-9

    Article  PubMed  Google Scholar 

  34. Bressem KK, Adams LC, Proft F, Hermann KGA, Diekhoff T, Spiller L et al (2023) Deep learning detects changes indicative of axial spondyloarthritis at MRI of sacroiliac joints. Radiology 307:239007. https://doi.org/10.1148/radiol.239007

    Article  Google Scholar 

  35. Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J et al (2023) Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 10:22. https://doi.org/10.1186/s40779-023-00458-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr Yunjun Yang and Mr Xiang Guo for assistance.

Funding

This work was supported by the Wenzhou Basic Research Project (Grant No. Y2020163) and National Natural Science Foundation of China (Grant No. 82201997).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by SM, LY, GZ, DC, QX, TL, CY, CP and MZ. The first draft of the manuscript was written by MZ, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Shouliang Miao or Lusi Ye.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in accordance with the Declaration of Helsinki and approved by the Institutional Review Board of the First Affiliated Hospital of Wenzhou Medical University (YS2020-239). The informed consent was waived due to the retrospective design.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 244 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Zhu, G., Chen, D. et al. T1-weighted images-based radiomics for structural lesions evaluation in patients with suspected axial spondyloarthritis. Radiol med 128, 1398–1406 (2023). https://doi.org/10.1007/s11547-023-01717-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-023-01717-3

Keywords

Navigation