Skip to main content

Advertisement

Log in

Cardiac-CT and cardiac-MR cost-effectiveness: a literature review

  • Cardiac radiology
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are still among the first causes of death worldwide with a huge impact on healthcare systems. Within these conditions, the correct diagnosis of coronary artery disease with the most appropriate imaging-based evaluations is of utmost importance. The sustainability of the healthcare systems, considering the high economic burden of modern cardiac imaging equipments, makes cost-effective analysis an important tool, currently used for weighing different costs and health outcomes, when policy makers have to allocate funds and to prioritize interventions, getting the most out of their financial resources. This review aims at evaluating cost-effective analysis in the more recent literature, focused on the role of Calcium Score, coronary computed tomography angiography and cardiac magnetic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Mensah GA, Roth GA, Fuster V (2019) The global burden of cardiovascular diseases and risk factors: 2020 and Beyond. JACC 19:2529–2532. https://doi.org/10.1016/j.jacc.2019.10.009

    Article  Google Scholar 

  2. European Cardiovascular Disease Statistics 2017 edition. https://www.ehnheart.org/cvd-statistics.html. Accessed 30 May 2020

  3. Levin DC, Rao VM, Parker L et al (2005) Recent trends in utilization of cardiovascular imaging: how important are they for radiology? J Am Coll Radiol 2:736–739. https://doi.org/10.1016/j.jacr.2005.01.015

    Article  Google Scholar 

  4. Picano E (2005) Economic and biological costs of cardiac imaging. Cardiovasc Ultrasound 3:13. https://doi.org/10.1186/1476-7120-3-13

    Article  Google Scholar 

  5. National Institute for Health and Clinical Excellence. Guide to the methods of technology appraisal. www.nice.org.uk/media/B52/A7/TAMethodsGuideUpdatedJune2008.pdf. Accessed 30 May 2020

  6. WHO Commission on Macroeconomics and Health (2001) Macroeconomics and health: investing in health for economic development. Report of the commission on macroeconomics and health. Geneva: World Health Organization, 200

  7. Weintraub WS, Cohen DJ (2009) The Limits of cost-effectiveness analysis. Circ Cardiovasc Qual Outcomes 2:55–58. https://doi.org/10.1161/CIRCOUTCOMES.108.812321

    Article  Google Scholar 

  8. Diamond GA, Kaul S (2009) Cost, effectiveness, and cost-effectiveness. Circ Cardiovasc Qual Outcomes 2:49–54. https://doi.org/10.1161/CIRCOUTCOMES.108.793406

    Article  Google Scholar 

  9. Kianoush S, Mirbolouk M, Makam RC et al (2017) Coronary artery calcium scoring in current clinical practice: how to define its value? Curr Treat Options Cardiovasc Med 19:85. https://doi.org/10.1007/s11936-017-0582-y

    Article  Google Scholar 

  10. Yeboah J, Young R, McClelland RL et al (2016) Utility of nontraditional risk markers in atherosclerotic cardiovascular disease risk assessment. JACC 67:139–147. https://doi.org/10.1016/j.jacc.2015.10.058

    Article  Google Scholar 

  11. Blaha MJ, Yeboah J, Al Rifai M et al (2016) Providing evidence for subclinical CVD in risk assessment. Glob Heart 11:275–285. https://doi.org/10.1016/j.gheart.2016.08.003

    Article  Google Scholar 

  12. Mody P, Joshi PH, Khera A et al (2016) Beyond coronary calcification, family history, and C-reactive protein: cholesterol efflux capacity and cardiovascular risk prediction. JACC 67:2480–2487. https://doi.org/10.1016/j.jacc.2016.03.538

    Article  CAS  Google Scholar 

  13. Sarwar A, Shaw LJ, Shapiro MD et al (2009) Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging 2:675–688. https://doi.org/10.1016/j.jcmg.2008.12.031

    Article  Google Scholar 

  14. Polonsky TS, McClelland RL, Jorgensen NW et al (2010) Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 303:1610–1616. https://doi.org/10.1001/jama.2010.461

    Article  CAS  Google Scholar 

  15. Nasir K, Bittencourt MS, Blaha MJ et al (2015) Implications of coronary artery calcium testing among statin candidates according to American College of Cardiology/American Heart Association Cholesterol Management guidelines: MESA (Multi-Ethnic Study of Atherosclerosis). JACC 66:1657–1668. https://doi.org/10.1016/j.jacc.2015.07.066

    Article  CAS  Google Scholar 

  16. Mahabadi AA, Möhlenkamp S, Lehmann N et al (2017) CAC score improves coronary and CV risk assessment above statin indication by ESC and AHA/ACC primary prevention guidelines. JACC Cardiovasc Imaging 10:143–153. https://doi.org/10.1016/j.jcmg.2016.03.022

    Article  Google Scholar 

  17. Pursnani A, Massaro JM, D’Agostino RB Sr et al (2015) Guideline-based statin eligibility, coronary artery calcification, and cardiovascular events. JAMA 314:134–141. https://doi.org/10.1001/jama.2015.7515

    Article  CAS  Google Scholar 

  18. van Kempen BJ, Spronk S, Koller MT et al (2011) Comparative effectiveness and cost-effectiveness of computed tomography screening for coronary artery calcium in asymptomatic individuals. JACC 58:1690–1701. https://doi.org/10.1016/j.jacc.2011.05.056

    Article  Google Scholar 

  19. Pletcher MJ, Pignone M, Earnshaw S et al (2014) Using the coronary artery calcium score to guide statin therapy: a cost-effectiveness analysis. Circ Cardiovasc Qual Outcomes 7:276–284. https://doi.org/10.1161/CIRCOUTCOMES.113.000799

    Article  Google Scholar 

  20. Roberts ET, Horne A, Martin SS et al (2015) Cost-effectiveness of coronary artery calcium testing for coronary heart and cardiovascular disease risk prediction to guide statin allocation: the Multi-Ethnic Study of Atherosclerosis (MESA). PLoS ONE 10:e0116377. https://doi.org/10.1371/journal.pone.0116377

    Article  CAS  Google Scholar 

  21. Galper BZ, Wang YC, Einstein AJ (2015) Strategies for primary prevention of coronary heart disease based on risk stratification by the ACC/AHA lipid guidelines, ATP III guidelines, coronary calcium scoring, and C-reactive protein, and a global treat-all strategy: a comparative–effectiveness modeling study. PLoS ONE 10:e0138092. https://doi.org/10.1371/journal.pone.0138092

    Article  CAS  Google Scholar 

  22. van Kempen BJ, Ferket BS, Steyerberg EW et al (2016) Comparing the cost-effectiveness of four novel risk markers for screening asymptomatic individuals to prevent cardiovascular disease (CVD) in the US population. Int J Cardiol 203:422–431. https://doi.org/10.1016/j.ijcard.2015.10.171

    Article  Google Scholar 

  23. Hong JC, Blankstein R, Shaw LJ et al (2017) Implications of coronary artery calcium testing for treatment decisions among statin candidates according to the ACC/AHA cholesterol management guidelines: a cost-effectiveness analysis. JACC Cardiovasc Imaging 10:938–952. https://doi.org/10.1016/j.jcmg.2017.04.014

    Article  Google Scholar 

  24. Chan PS, Patel MR, Klein LW, Krone RJ et al (2011) Appropriateness of percutaneous coronary intervention. JAMA 306:53–61. https://doi.org/10.1001/jama.2011.916

    Article  CAS  Google Scholar 

  25. Go AS, Mozaffarian D, Roger VL et al (2013) Heart disease and stroke statistics-2013 update: a report from the American Heart Association. Circulation 127:e6–e245. https://doi.org/10.1161/CIR.0b013e31828124ad

    Article  Google Scholar 

  26. Bradley SM, Spertus JA, Kennedy KF et al (2014) Patient selection for diagnostic coronary angiography and hospital-level percutaneous coronary intervention appropriateness: insights from the National Cardiovascular Data Registry. JAMA Intern Med 174:1630–1639. https://doi.org/10.1001/jamainternmed.2014.3904

    Article  Google Scholar 

  27. Bradley SM, Maddox TM, Stanislawski MA et al (2014) Normal coronary rates for elective angiography in the Veterans Affairs Healthcare System: insights from the VA CART program (veterans affairs clinical assessment reporting and tracking). JACC 63:417–426. https://doi.org/10.1016/j.jacc.2013.09.055

    Article  Google Scholar 

  28. Patel MR, Peterson ED, Dai D et al (2010) Low diagnostic yield of elective coronary angiography. NEJM 362:886–895. https://doi.org/10.1056/NEJMoa0907272

    Article  CAS  Google Scholar 

  29. Janne d’Othee B, Siebert U, Cury R et al (2008) A systematic review on diagnostic accuracy of CT-based detection of significant coronary artery disease. Eur J Radiol 65:449–461. https://doi.org/10.1016/j.ejrad.2007.05.003

    Article  Google Scholar 

  30. Budoff MJ, Dowe D, Jollis JG et al (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicentre ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. JACC 52:1724–1732. https://doi.org/10.1016/j.jacc.2008.07.031

    Article  Google Scholar 

  31. Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. NEJM 359:2324–2336. https://doi.org/10.1056/NEJMoa0806576

    Article  CAS  Google Scholar 

  32. Meijboom WB, Meijs MF, Schuijf JD et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. JACC 52:2135–2144. https://doi.org/10.1016/j.jacc.2008.08.058

    Article  Google Scholar 

  33. Recent-onset chest pain of suspected cardiac origin: assessment and diagnosis. Clinical guideline [CG95]. https://www.nice.org.uk/guidance/cg95. Accessed 30 May 2020

  34. Knuuti J, Wijns W, Saraste A et al (2020) ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 41:407–477. https://doi.org/10.1093/eurheartj/ehz425

    Article  Google Scholar 

  35. Budoff MJ, Karwasky R, Ahmadi N et al (2009) Cost-effectiveness of multidetector computed tomography compared with myocardial perfusion imaging as gatekeeper to invasive coronary angiography in asymptomatic firefighters with positive treadmill tests. J Cardiovasc Comput Tomogr 3:323–330. https://doi.org/10.1016/j.jcct.2009.08.004

    Article  Google Scholar 

  36. Halpern EJ, Savage MP, Fischman DL et al (2010) Cost-effectiveness of coronary CT angiography in evaluation of patients without symptoms who have positive stress test results. AJR 194:1257–1262. https://doi.org/10.2214/AJR.09.3209

    Article  Google Scholar 

  37. Lorenzoni V, Bellelli S, Caselli C et al (2019) Cost-effectiveness analysis of stand-alone or combined non-invasive imaging tests for the diagnosis of stable coronary artery disease: results from the EVINCI study. Eur J Health Econ 20:1437–1449. https://doi.org/10.1007/s10198-019-01096-5

    Article  Google Scholar 

  38. Meijboom WB, Van Mieghe CA, van Pelt N et al (2008) Comprehensive assessment of coronary artery stenoses: computed tomography coronary angiography versus conventional coronary angiography and correlation with fractional flow reserve in patients with stable angina. JACC 52:636–643. https://doi.org/10.1016/j.jacc.2008.05.024

    Article  Google Scholar 

  39. Koo BK, Erglis A, Doh JH et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicentre DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. JACC 58:1989–1997. https://doi.org/10.1016/j.jacc.2011.06.066

    Article  Google Scholar 

  40. Secchi F, Alì M, Faggiano E et al (2016) Fractional flow reserve based on computed tomography: an overview. Eur Heart J Suppl 18:E49–E56. https://doi.org/10.1093/eurheartj/suw014

    Article  Google Scholar 

  41. Hlatky MA, Saxena A, Koo BK et al (2013) Projected costs and consequences of computed tomography-determined fractional flow reserve. Clin Cardiol 36:743–748. https://doi.org/10.1002/clc.22205

    Article  Google Scholar 

  42. Lee SP, Jang EJ, Kim YJ et al (2015) Cost-effectiveness of coronary CT angiography in patients with chest pain: comparison with myocardial single photon emission tomography. J Cardiovasc Comput Tomogr 9:428–437. https://doi.org/10.1016/j.jcct.2015.02.008

    Article  Google Scholar 

  43. Shreibati JB, Baker LC, Hlatky MA (2011) Association of coronary CT angiography or stress testing with subsequent utilization and spending among Medicare beneficiaries. JAMA 306:2128–2136. https://doi.org/10.1001/jama.2011.1652

    Article  CAS  Google Scholar 

  44. Hulten E, Goehler A, Bittencourt MS et al (2013) Cost and resource utilization associated with use of computed tomography to evaluate chest pain in the emergency department: the Rule Out Myocardial Infarction Using Computer Assisted Tomography (ROMICAT) Study. Circ Cardiovasc Qual Outcomes 6:514–524. https://doi.org/10.1161/CIRCOUTCOMES.113.000244

    Article  Google Scholar 

  45. Lee SP, Seo JK, Hwang IC et al (2019) Coronary computed tomography angiography vs. myocardial single photon emission computed tomography in patients with intermediate risk chest pain: a randomized clinical trial for cost-effectiveness comparison based on real-world cost. Eur Heart J Cardiovasc Imaging 20:417–425. https://doi.org/10.1093/ehjci/jey099

    Article  Google Scholar 

  46. Bertoldi EG, Stella SF, Rohde LEP et al (2017) Cost-effectiveness of anatomical and functional test strategies for stable chest pain: public health perspective from a middle-income country. BMJ Open 7:e012652. https://doi.org/10.1136/bmjopen-2016-012652

    Article  Google Scholar 

  47. Agus AM, McKavanagh P, Lusk L et al (2016) The cost-effectiveness of cardiac computed tomography for patients with stable chest pain. Heart 102:356–362. https://doi.org/10.1136/heartjnl-2015-308247

    Article  CAS  Google Scholar 

  48. Gutberlet M, Fröhlich M, Mehl S et al (2005) Myocardial viability assessment in patients with highly impaired left ventricular function: comparison of delayed enhancement, dobutamine stress MRI, end-diastolic wall thickness, and TI201-SPECT with functional recovery after revascularization. Eur Radiol 15:872–880. https://doi.org/10.1007/s00330-005-2653-9

    Article  CAS  Google Scholar 

  49. Thom H, West NE, Hughes V et al (2014) Cost-effectiveness of initial stress cardiovascular MR, stress SPECT or stress echocardiography as a gate-keeper test, compared with upfront invasive coronary angiography in the investigation and management of patients with stable chest pain: mid-term outcomes from the CECaT randomised controlled trial. BMJ Open 7:e003419. https://doi.org/10.1136/bmjopen-2013-003419

    Article  Google Scholar 

  50. Moschetti K, Muzzarelli S, Pinget C et al (2012) Cost evaluation of cardiovascular magnetic resonance versus coronary angiography for the diagnostic work-up of coronary artery disease: application of the European Cardiovascular Magnetic Resonance registry data to the German, United Kingdom, Swiss, and United States health care systems. J Cardiovasc Magn Reson 14:35. https://doi.org/10.1186/1532-429X-14-35

    Article  Google Scholar 

  51. Moschetti K, Favre D, Pinget C et al (2014) Comparative cost-effectiveness analyses of cardiovascular magnetic resonance and coronary angiography combined with fractional flow reserve for the diagnosis of coronary artery disease. J Cardiovasc Magn Reson 16:13. https://doi.org/10.1186/1532-429X-16-13

    Article  Google Scholar 

  52. Moschetti K, Petersen SE, Pilz G et al (2016) Cost-minimization analysis of three decision strategies for cardiac revascularization: results of the “suspected CAD” cohort of the European Cardiovascular Magnetic Resonance Registry. J Cardiovasc Magn Reson 18:3. https://doi.org/10.1186/s12968-015-0222-1

    Article  Google Scholar 

  53. Walker S, Girardin F, McKenna C et al (2013) Cost-effectiveness of cardiovascular magnetic resonance in the diagnosis of coronary heart disease: an economic evaluation using data from the CE-MARC study. Heart 99:873–881. https://doi.org/10.1136/heartjnl-2013-303624

    Article  Google Scholar 

  54. Pletscher M, Walker S, Moschetti K et al (2016) Cost-effectiveness of functional cardiac imaging in the diagnostic work-up of coronary heart disease. Eur Heart J Qual Care Clin Outcomes 1:201–207. https://doi.org/10.1093/ehjqcco/qcw008

    Article  Google Scholar 

  55. Petrov G, Kelle S, Fleck E et al (2015) Incremental cost-effectiveness of dobutamine stress cardiac magnetic resonance imaging in patients at intermediate risk for coronary artery disease. Clin Res Cardiol 104:401–409. https://doi.org/10.1007/s00392-014-0793-0

    Article  Google Scholar 

  56. Campbell F, Thokala P, Uttley LC et al (2014) Systematic review and modelling of the cost-effectiveness of cardiac magnetic resonance imaging compared with current existing testing pathways in ischaemic cardiomyopathy. Health Technol Assess 18:1–120. https://doi.org/10.3310/hta18590

    Article  Google Scholar 

  57. Porter ME (2010) What is value in health care? NEJM 363:2477–2481. https://doi.org/10.1056/NEJMp1011024

    Article  CAS  Google Scholar 

  58. Hegde VA, Biederman RW, Mikolich JR (2017) Cardiovascular magnetic resonance imaging-incremental value in a series of 361 patients demonstrating cost savings and clinical benefits: an outcome-based study. Clin Med Insights Cardiol 11:1–10. https://doi.org/10.1177/1179546817710026

    Article  Google Scholar 

  59. Miller CD, Hwang W, Case D et al (2011) Stress CMR imaging observation unit in the emergency department reduces 1-year medical care costs in patients with acute chest pain: a randomized study for comparison with inpatient care. JACC Cardiovasc Imaging 4:862–870. https://doi.org/10.1016/j.jcmg.2011.04.016

    Article  Google Scholar 

  60. Hulten E, Goehler A, Bittencourt MS et al (2013) Cost and resource utilization associated with use of computed tomography to evaluate chest pain in the emergency department: the Rule Out Myocardial Infarction using Computer Assisted Tomography (ROMICAT) study. Circ Cardiovasc Qual Outcomes 1:514–524. https://doi.org/10.1161/CIRCOUTCOMES.113.000244

    Article  Google Scholar 

  61. Zeb I, Abbas N, Nasir K et al (2014) Coronary computed tomography as a cost-effective test strategy for coronary artery disease assessment - a systematic review. Atherosclerosis 234:426–435. https://doi.org/10.1016/j.atherosclerosis.2014.02.011

    Article  CAS  Google Scholar 

  62. Ge Y, Pandya A, Steel K et al (2020) Cost-effectiveness analysis of stress cardiovascular magnetic resonance imaging for stable chest pain syndromes. JACC Cardiovasc Imaging 13:1505–1517. https://doi.org/10.1016/j.jcmg.2020.02.029

    Article  Google Scholar 

  63. Blanke P, Weir-McCall JR, Achenbach S et al (2019) Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): an expert consensus document of the Society of Cardiovascular Computed Tomography. J Cardiovasc Comput Tomogr 13:1–20. https://doi.org/10.1016/j.jcct.2018.11.008

    Article  Google Scholar 

  64. Huygens SA, Takkenberg JJ, Rutten-van Molken MP (2018) Systematic review of model-based economic evaluations of heart valve implantations. Eur J Health Econ 19:241–255. https://doi.org/10.1007/s10198-017-0880-z

    Article  Google Scholar 

  65. Manolis AS (2017) Transcatheter aortic valve implantation economics: a grisly reality. Ann Cardiothorac Surg 6:516–523. https://doi.org/10.21037/acs.2017.07.02

    Article  Google Scholar 

  66. Mahon C, Mohiaddin RH (2019) The emerging applications of cardiovascular magnetic resonance imaging in transcatheter aortic valve implantation. Clin Radiol 23:S0009-9260(19)30656-7. https://doi.org/10.1016/j.crad.2019.11.011

    Article  Google Scholar 

  67. Di Cesare E, Carbone I, Carriero A et al (2012) Clinical indications for cardiac computed tomography. From the working group of the cardiac radiology section of the Italian Society of Medical Radiology (SIRM). Radiol Med 117:901–938. https://doi.org/10.1007/s11547-012-0899-2

    Article  Google Scholar 

  68. Di Cesare E, Cademartiri F, Carbone I et al (2013) Clinical indications for the use of cardiac MRI. By the SIRM Study Group on Cardiac Imaging. Radiol Med 118:752–798. https://doi.org/10.1007/s11547-012-0899-2

    Article  Google Scholar 

  69. Malagò R, Pezzato A, Barbiani C et al (2013) Role of MDCT coronary angiography in the clinical setting: economic implications. Radiol Med 118:1294–1308. https://doi.org/10.1007/s11547-013-0933-z

    Article  Google Scholar 

  70. Centonze M, Lorenzin G, Francesconi A et al (2016) Cardiac-CT and Cardiac-MR examinations cost analysis, based on data of four Italian Centers. Radiol Med 121:12–18. https://doi.org/10.1007/s11547-015-0566-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Centonze.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Centonze, M., Steidler, S., Casagranda, G. et al. Cardiac-CT and cardiac-MR cost-effectiveness: a literature review. Radiol med 125, 1200–1207 (2020). https://doi.org/10.1007/s11547-020-01290-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-020-01290-z

Keywords

Navigation