Skip to main content

Advertisement

Log in

Radiation dose in nuclear medicine: the hybrid imaging

  • RADIOBIOLOGY AND SAFETY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Hybrid imaging procedures such as single-photon emission computed tomography/computed tomography (SPECT/CT) and positron emission tomography/computed tomography (PET/CT) showed a rapid diffusion in recent years because of their high sensitivity, specificity, and accuracy, due to a more accurate localization and definition of scintigraphic findings. However, hybrid systems inevitably lead to an increase in patient radiation exposure because of the added CT component. Effective doses due to the radiopharmaceuticals can be estimated by multiplying the administered activities by the effective dose coefficients, while for the CT component the dose-length product can be multiplied by a conversion coefficient k. However, the effective dose value is subject to a high degree of uncertainty and must be interpreted as a broad, generic estimate of biologic risk. Although the effective dose can be used to estimate and compare the risk of radiation exposure across multiple imaging techniques, clinicians should be aware that it represents a generic evaluation of the risk derived from a given procedure to a generic model of the human body. It cannot be applied to a single individual and should not be used for epidemiologic studies or the estimation of population risks due to the inherent uncertainties and oversimplifications involved. Practical ways to reduce radiation dose to patients eligible for hybrid imaging involve adjustments to both the planning phase and throughout the execution of the study. These methods include individual justification of radiation exposure, radiopharmaceutical choice, adherence to diagnostic reference levels (DLR), patient hydration and bladder voiding, adoption of new technical devices (sensitive detectors or collimators) with new reconstruction algorithms, and implementation of appropriate CT protocols and exposure parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. National Council on Radiation Protection and Measurements (2009) Ionizing radiation exposure of the population of the United States (NCRP Report No 160)

  2. Wibmer AG, Hricak H, Ulaner GA, Weber W (2018) Trends in oncologic hybrid imaging. Eur J Hybrid Imaging 2:1. https://doi.org/10.1186/s41824-017-0019-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ritt P, Sanders J, Kuwert T (2014) SPECT/CT technology. Clin Transl Imaging 2: 445. https://doi.org/10.1007/s40336-014-0086-7

  4. Patton JA, Townsend DW, Hutton BF (2009) Hybrid imaging technology: from dreams and vision to clinical devices. Semin Nucl Med 39:247–263. https://doi.org/10.1053/j.semnuclmed.2009.03.005

    Article  PubMed  Google Scholar 

  5. Even-Sapir E, Keidar Z, Bar-Shalom R (2009) Hybrid imaging (SPECT/CT and PET/CT)–improving the diagnostic accuracy of functional/metabolic and anatomic imaging. Semin Nucl Med 39:264–275. https://doi.org/10.1053/j.semnuclmed.2009.03.004

    Article  PubMed  Google Scholar 

  6. Mannheim JG, Schmid AM, Schwenck J et al (2018) PET/mri hybrid systems. Semin Nucl Med 48:332–347. https://doi.org/10.1053/j.semnuclmed.2018.02.011

    Article  PubMed  Google Scholar 

  7. Brix G, Nekolla EA, Borowski M, Noßke D (2014) Radiation risk and protection of patients in clinical SPECT/CT. Eur J Nucl Med Mol Imaging 41(Suppl 1):S125–136. https://doi.org/10.1007/s00259-013-2543-3

    Article  PubMed  Google Scholar 

  8. Society of Nuclear Medicine and Molecular Imaging (SNMMI) (2012) SNMMI Position Statement on Dose Optimization for Nuclear Medicine and Molecular Imaging Procedures

  9. Mettler FA, Huda W, Yoshizumi TT, Mahesh M (2008) Effective doses in radiology and diagnostic nuclear medicine: a catalog. Radiology 248:254–263. https://doi.org/10.1148/radiol.2481071451

    Article  PubMed  Google Scholar 

  10. ICRP (1998) Radiation dose to patients from radiopharmaceuticals (Addendum to ICRP Publication 53). ICRP Publication 80. Ann. ICRP 28(3)

  11. D.Lgs. 26 maggio 2000, n. 187, recante attuazione della direttiva 97/43/Euratom in materia di protezione sanitaria delle persone contro i pericoli delle radiazioni ionizzanti connesse ad esposizioni mediche

  12. Larkin AM, Serulle Y, Wagner S et al (2011) Quantifying the increase in radiation exposure associated with SPECT/CT Compared to SPECT alone for routine nuclear medicine examinations. Int J Mol Imaging 2011:897202. https://doi.org/10.1155/2011/897202

    Article  PubMed  PubMed Central  Google Scholar 

  13. Montes C, Tamayo P, Hernandez J et al (2013) Estimation of the total effective dose from low-dose CT scans and radiopharmaceutical administrations delivered to patients undergoing SPECT/CT explorations. Ann Nucl Med 27:610–617. https://doi.org/10.1007/s12149-013-0724-6

    Article  CAS  PubMed  Google Scholar 

  14. Sharma P, Sharma S, Ballal S et al (2012) SPECT-CT in routine clinical practice: increase in patient radiation dose compared with SPECT alone. Nucl Med Commun 33:926–932. https://doi.org/10.1097/MNM.0b013e328355b6d5

    Article  PubMed  Google Scholar 

  15. AAPM Report no 96 (2008) The measuring, reporting and management of radiation dose in CT. In: Report of AAPM task group 23: CT Dosimetry—Diagnostic Imaging Council CT Committee. American Association of Physicists in Medicine, one physics ellipse, College Park, pp 20740–3846

  16. Iball GR, Bebbington NA, Burniston M et al (2017) A national survey of computed tomography doses in hybrid PET-CT and SPECT-CT examinations in the UK. Nucl Med Commun 38:459–470. https://doi.org/10.1097/MNM.0000000000000672

    Article  PubMed  Google Scholar 

  17. Buck AK, Nekolla S, Ziegler S et al (2008) SPECT/CT. J Nucl Med Off Publ Soc Nucl Med 49:1305–1319. https://doi.org/10.2967/jnumed.107.050195

    Article  Google Scholar 

  18. Roach PJ, Schembri GP, Ho Shon IA et al (2006) SPECT/CT imaging using a spiral CT scanner for anatomical localization: impact on diagnostic accuracy and reporter confidence in clinical practice. Nucl Med Commun 27:977–987. https://doi.org/10.1097/01.mnm.0000243372.26507.e7

    Article  PubMed  Google Scholar 

  19. Sawyer LJ, Starritt HC, Hiscock SC, Evans MJ (2008) Effective doses to patients from CT acquisitions on the GE Infinia Hawkeye: a comparison of calculation methods. Nucl Med Commun 29:144–149. https://doi.org/10.1097/MNM.0b013e3282f258ef

    Article  PubMed  Google Scholar 

  20. Miller JC (2010) Hybrid SPECT/CT: enhancing nuclear medicine. Radiol Rounds 8(7)

  21. Kneifel S (2003) Radiation dose and radiation protection. In: von Shultness GK (ed) Clinical molecular anatomic imaging. Lippincott, Philadelphia, pp 68–71

    Google Scholar 

  22. ICRP (2007) The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2–4)

  23. Martin CJ (2007) Effective dose: how should it be applied to medical exposures? Br J Radiol 80:639–647. https://doi.org/10.1259/bjr/25922439

    Article  CAS  PubMed  Google Scholar 

  24. Shrimpton PC, Wall BF, Yoshizumi TT et al (2009) Effective dose and dose-length product in CT. Radiology 250:604–605. https://doi.org/10.1148/radiol.2502081340

    Article  PubMed  Google Scholar 

  25. Lima TVM, Gnesin S, Ryckx N et al (2018) Swiss survey on hybrid imaging CTs doses in Nuclear Medicine and proposed national dose reference levels. Z Med Phys. https://doi.org/10.1016/j.zemedi.2018.01.005

    Article  PubMed  Google Scholar 

  26. Duvall WL, Croft LB, Ginsberg ES et al (2011) Reduced isotope dose and imaging time with a high-efficiency CZT SPECT camera. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 18:847–857. https://doi.org/10.1007/s12350-011-9379-7

    Article  Google Scholar 

  27. Ferrari M, De Marco P, Origgi D, Pedroli G (2014) SPECT/CT radiation dosimetry. Clin Transl. Imaging 2:557–569. https://doi.org/10.1007/s40336-014-0093-8

    Article  Google Scholar 

  28. Koulikov V, Lerman H, Kesler M, Even-Sapir E (2015) (99 m)Tc-MDP bone scintigraphy of the hand: comparing the use of novel cadmium zinc telluride (CZT) and routine NaI(Tl) detectors. EJNMMI Res 5:63. https://doi.org/10.1186/s13550-015-0139-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Imbert L, Poussier S, Franken PR et al (2012) Compared performance of high-sensitivity cameras dedicated to myocardial perfusion SPECT: a comprehensive analysis of phantom and human images. J Nucl Med Off Publ Soc Nucl Med 53:1897–1903. https://doi.org/10.2967/jnumed.112.107417

    Article  Google Scholar 

  30. Lyon MC, Foster C, Ding X et al (2016) Dose reduction in half-time myocardial perfusion SPECT-CT with multifocal collimation. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 23:657–667. https://doi.org/10.1007/s12350-016-0471-x

    Article  Google Scholar 

  31. Lecchi M, Malaspina S, Scabbio C et al (2016) Myocardial perfusion scintigraphy dosimetry: optimal use of SPECT and SPECT/CT technologies in stress-first imaging protocol. Clin Transl Imaging 4:491–498. https://doi.org/10.1007/s40336-016-0212-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marcassa C, Campini R, Zoccarato O, Calza P (2011) Wide beam reconstruction for half-dose or half-time cardiac gated SPECT acquisitions: optimization of resources and reduction in radiation exposure. Eur J Nucl Med Mol Imaging 38:499–508. https://doi.org/10.1007/s00259-010-1654-3

    Article  PubMed  Google Scholar 

  33. Livieratos L, Mohan H, Gnanasegaran G, Fogelman I (2010) Comparison of 10 versus 20 min SPECT 99mTc-MDP bone scans: use of 3D-OSEM image reconstruction with distance-dependent resolution modelling. Nucl Med Commun 31:1045–1053. https://doi.org/10.1097/MNM.0b013e32833fba6e

    Article  PubMed  Google Scholar 

  34. Aldridge MD, Waddington WW, Dickson JC et al (2013) Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software. Nucl Med Commun 34:1116–1123. https://doi.org/10.1097/MNM.0b013e3283658328

    Article  PubMed  Google Scholar 

  35. Jallow N, Christian P, Sunderland J et al (2016) Diagnostic Reference Levels of CT Radiation Dose in Whole-Body PET/CT. J Nucl Med Off Publ Soc Nucl Med 57:238–241. https://doi.org/10.2967/jnumed.115.160465

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Salvatori.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvatori, M., Rizzo, A., Rovera, G. et al. Radiation dose in nuclear medicine: the hybrid imaging. Radiol med 124, 768–776 (2019). https://doi.org/10.1007/s11547-019-00989-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-019-00989-y

Keywords

Navigation