Skip to main content

Advertisement

Log in

Role of DCE-MR in predicting breast cancer subtypes

  • BREAST RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Objective

The purpose of this retrospective study is to find a correlation between dynamic contrast-enhanced MR features with histological, immunohistochemical and loco-regional characteristics of breast cancer.

Materials and methods

A total of 149 patients with histopathologically confirmed invasive breast carcinoma underwent MR imaging. Histological analysis included: histological features (histological type, necrosis, vascular invasion and Mib-1), immunohistochemical characterization (immunophenotype, receptor status, HER2-neu and grading) and loco-regional characteristics (T and N). The kinetic MR features analyzed were: curve type, maximum enhancement, time to peak, wash-in and wash-out rate, brevity of enhancement and area under curve.

Results

MRI kinetic parameters and immunohistological features were compared using chi square test, two-tailed student t test and Anova test, with p = 0.05 level of significance. Vascular invasion was shown to be significantly related to time to peak (p = 0.02). The immunohistotype was shown to be significantly related with maximum enhancement (p = 0.05), time to peak (p = 0.04) and wash-in rate (p = 0.01). ER status correlates with maximum and relative enhancement (p = 0.004 and p = 0.028), wash-in rate (p = 0.0018) and area under curve (p = 0.006). PR status was significantly related to time to peak (p = 0.048) and wash-in rate (p = 0.05).

Conclusion

Maximum enhancement absolute and relative, time to peak, wash-in rate and area under the curve significantly correlate with several prognostic factors, like ER status, immune profile and tumoral vascular invasion, and may predict the aggressiveness of the tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D (2013) Cancer incidence and mortality. IARC CancerBase No. 11

  2. Jackisch C, Harbeck N, Huober J et al (2015) 14th St. Gallen international breast cancer conference 2015: evidence, controversies, consensus—primary therapy of early breast cancer: opinions expressed by German experts. Breast Care 10(3):211–219. https://doi.org/10.1159/000433590

    Article  PubMed  PubMed Central  Google Scholar 

  3. Blaschke E, Abe H (2015) MRI phenotype of breast cancer: kinetic assessment for molecular subtypes. J Magn Reson Imaging. 42(4):920–924. https://doi.org/10.1002/jmri.24884

    Article  PubMed  Google Scholar 

  4. Montemurro F, Martincich L, Sarotto I, Bertotto I, Ponzone R, Cellini L, Redana S, Sismondi P, Aglietta M, Regge D (2007) See comment in PubMed commons below Relationship between DCE–MRI morphological and functional features and histopathological characteristics of breast cancer. Eur Radiol 17(6):1490–1497

    Article  PubMed  Google Scholar 

  5. Lee SH, Cho N, Chung HK, Kim SJ, Cha JH, Cho KS et al (2008) Breast MR imaging: correlation of high resolution dynamic MR findings with prognostic factors. J Korean Radiol Soc 9:10–18

    Article  Google Scholar 

  6. Krüger S S, Fahrenkrog T, Müller H (1999) Proliferative and apoptotic activity in lobular breast carcinoma. Int J Mol Med. 4(2):171–174

    PubMed  Google Scholar 

  7. Lee AH, Dublin EA, Bobrow LG, Poulsom R (1998) Invasive lobular and invasive ductal carcinoma of the breast show distinct patterns of vascular endothelial growth factor expression and angiogenesis. J Pathol 185(4):394–401

    Article  CAS  PubMed  Google Scholar 

  8. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    Article  PubMed  Google Scholar 

  9. Macura KJ, Ouwerkerk R, Jacobs MA, Bluemke DA (2006) Patterns of enhancement on breast MR images: interpretation and imaging pitfalls. Radiographics 26(6):1719–1734

    Article  PubMed  Google Scholar 

  10. Chang RF, Chen HH, Chang YC, Huang CS, Chen JH, Lo CM (2016) Quantification of breast tumor heterogeneity for ER status, HER2 status, and TN molecular subtype evaluation on DCE-MRI. Magn Reson Imaging 34(6):809–819

    Article  CAS  PubMed  Google Scholar 

  11. Bae MS, Park SY, Song SE, Kim WH, Lee SH, Han W, Park IA, Noh DY, Moon WK (2015) Heterogeneity of triple-negative breast cancer: mammographic, US, and MR imaging features according to androgen receptor expression. Eur Radiol 25(2):419–427

    Article  PubMed  Google Scholar 

  12. Amornsiripanitch N, Nguyen VT, Rahbar H, Hippe DS, Gadi VK, Rendi MH, Partridge SC (2017) Diffusion-weighted MRI characteristics associated with prognostic pathological factors and recurrence risk in invasive ER+/HER2–breast cancers. J Magn Reson Imaging 00:1–11

    Google Scholar 

  13. Prochowski Iamurri A, Ponziani M, Macchini M, Fogante M, Pistelli M, De Lisa M, Berardi R, Giuseppetti GM (2017) Evaluation of multifocality and multicentricity with breast magnetic resonance imaging in each breast cancer subtype. Clin Breast Cancer 18(2):e231–e235

    Article  PubMed  Google Scholar 

  14. Phipps AI, Li CI, Kerlikowske K, Barlow WE, Diana Buist D (2010) Risk factors for ductal, lobular, and mixed ductal-lobular breast cancer in a screening population. Cancer Epidemiol Biomark Prev. 19(6):1643–1654

    Article  Google Scholar 

  15. Zhang BN, Cao XC, Chen JY et al (2012) Guidelines on the diagnosis and treatment of breast cancer (2011 edition). Gland Surg 1(1):39

    PubMed  PubMed Central  Google Scholar 

  16. Suryadevara A, Paruchuri LP, Banisaeed N, Dunnington G, Rao KA (2010) The clinical behavior of mixed ductal/lobular carcinoma of the breast: a clinicopathologic analysis. World J Surg Oncol 8(1):51

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wolff AC, Hammond MEH, Schwartz JN et al (2006) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 131(1):18–43

    Google Scholar 

  18. Coates AS, Winer EP, Goldhirsch A (2015) Tailoring therapies—improving the management of early breast cancer: St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2015. Ann Oncol 26(8):1533–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Delille JP, Slanetz PJ, Yeh ED, Kopans DB, Garrido L (2005) Physiologic changes in breast magnetic resonance imaging during the menstrual cycle: perfusion imaging, signal enhancement, and influence of the T1 relaxation time of breast tissue. Breast J 11:236–241

    Article  PubMed  Google Scholar 

  20. Kuhl CK, Bieling HB, Gieseke J et al (1997) Healthy premenopausal breast parenchyma in dynamic contrast-enhanced MR imaging of the breast: normal contrast medium enhancement and cyclical-phase dependency. Radiology 203(1):137–144

    Article  CAS  PubMed  Google Scholar 

  21. Muller-Schimpfle M, Ohmenhauser K, Stoll P, Dietz K, Claussen CD (1997) Menstrual cycle and age: influence on parenchymal contrast medium enhancement in MR imaging of the breast. Radiology 203:145–149

    Article  CAS  PubMed  Google Scholar 

  22. American College of Radiology (2013) Breast imaging reporting and data system(BI-RADS), 5th edn. American College of Radiology, New York

    Google Scholar 

  23. Wang L, Van den Bos IC, Hussain SM, Pattynama PM, Vogel MW, Krestin GP (2008) Post-processing of dynamic gadolinium-enhanced magnetic resonance imaging exams of the liver: explanation and potential clinical applications for color-coded qualitative and quantitative analysis. Acta Radiol 49(1):6–18

    Article  CAS  PubMed  Google Scholar 

  24. Narod SA (2012) Tumor size predicts long-term survival among women with limph-node positive breast cancer. Curr Oncol 19(5):249

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiao M, Xu Q, Lou C, Qin Y, Ning X, Liu T, Zhao X, Jia S, Huang Y (2017) Overexpression of tumor necrosis factor-α-induced protein 8 (TNFAIP8) is associated with tumor aggressiveness and poor prognosis in patients with invasive ductal breast carcinoma. Hum Pathol 62:40–49

    Article  CAS  PubMed  Google Scholar 

  26. Coradini D, Pellizzaro C, Veneroni S, Ventura L, Daidone MG (2002) Infiltrating ductal and lobular breast carcinomas are characterised by different interrelationships among markers related to angiogenesis and hormone dependence. Br J Cancer 87(10):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Turashvili G, Bouchal J, Burkadze G, Kolár Z (2005) Differentiation of tumours of ductal and lobular origin: I. Proteomics of invasive ductal and lobular breast carcinomas. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 149(1):57–62

    Article  CAS  PubMed  Google Scholar 

  28. Siemann DW (2011) The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by tumor-vascular disrupting agents. Cancer Treat Rev 37:63–74

    Article  CAS  PubMed  Google Scholar 

  29. Makkat S, Luypaert R, Stadnik T et al (2008) Deconvolution-based dynamic contrast-enhanced MR imaging of breast tumors: correlation of tumor blood flow with human epidermal growth factor receptor 2 status and clinicopathologic findings–preliminary results. Radiology 249:471–482

    Article  PubMed  Google Scholar 

  30. Crown J, O’Shaughnessy J, Gullo G (2012) Emerging targeted therapies in triple negative breast cancer. Ann Oncol 23(Suppl. 6):vi56–vi65

    PubMed  Google Scholar 

  31. Lloyd et al (2014) Vascular measurements correlate with estrogen receptor status. BMC Cancer 14:279

    Article  PubMed  PubMed Central  Google Scholar 

  32. O’Connor JP, Aboagye EO, Adams JE et al (2017) Imaging biomarker roadmap for cancer studies. Nat Rev Clin Oncol 14:169–186

    Article  CAS  PubMed  Google Scholar 

  33. Shin HJ, Kim HH, Shin KC et al (2016) Prediction of low-risk breast cancer using perfusion parameters and apparent diffusion coefficient. Magn Reson Imaging 34(2):67–74

    Article  PubMed  Google Scholar 

  34. Holli-Helenius H, Salminen A, Rinta-Kiikka I et al (2017) MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes—a feasibility study. BMC Med Imaging 17(1):69

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kim JY, Kim SH, Kim YJ et al (2015) Enhancement parameters on dynamic contrast enhanced breast MRI: do they correlate with prognostic factors and subtypes of breast cancers? Magn Reson Imaging 33(1):72–80

    Article  CAS  PubMed  Google Scholar 

  36. Weaver O, Leung JWT (2018) Biomarkers and Imaging of Breast Cancer. Am J Roentgenol 210:271–278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Macchini.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Research involving human participants and/or animals

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent for this retrospective study is waived.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macchini, M., Ponziani, M., Iamurri, A.P. et al. Role of DCE-MR in predicting breast cancer subtypes. Radiol med 123, 753–764 (2018). https://doi.org/10.1007/s11547-018-0908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-018-0908-1

Keywords

Navigation