Skip to main content

Advertisement

Log in

Virtual anthropology: useful radiological tools for age assessment in clinical forensic medicine and thanatology

  • ETHICS AND FORENSIC RADIOLOGY
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Virtual anthropology consists of the introduction of modern slice imaging to biological and forensic anthropology. Thanks to this non-invasive scientific revolution, some classifications and staging systems, first based on dry bone analysis, can be applied to cadavers with no need for specific preparation, as well as to living persons. Estimation of bone and dental age is one of the possibilities offered by radiology. Biological age can be estimated in clinical forensic medicine as well as in living persons. Virtual anthropology may also help the forensic pathologist to estimate a deceased person’s age at death, which together with sex, geographical origin and stature, is one of the important features determining a biological profile used in reconstructive identification. For this forensic purpose, the radiological tools used are multislice computed tomography and, more recently, X-ray free imaging techniques such as magnetic resonance imaging and ultrasound investigations. We present and discuss the value of these investigations for age estimation in anthropology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dedouit F, Savall F, Mokrane FZ, Rousseau H, Crubezy E, Rouge D et al (2014) Virtual anthropology and forensic identification using multidetector CT. Br J Radiol 87:20130468

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Brogdon BG (1998) Forensic radiology. CRC Press, Boca Raton

    Book  Google Scholar 

  3. Beauthier J-P (2008) Traité de médecine légale. De Boeck, Bruxelles

    Google Scholar 

  4. Ubelaker DH (1978) Human skeletal remains: excavation, analysis, interpretation. Aldine Publishing, Chicago

    Google Scholar 

  5. Scheuer L, Black SM (2004) The juvenile skeleton. Elsevier Academic Press, Amsterdam

    Google Scholar 

  6. Schmeling A, Reisinger W, Geserick G, Olze A (2006) Age estimation of unaccompanied minors part I. General considerations. Forensic Sci Int 159:61–64

    Article  Google Scholar 

  7. Schmeling A, Krocker K, Wirth I (2013) History, present situation and perspectives of forensic age diagnostics of living persons. Arch Kriminol 231:145–155

    PubMed  Google Scholar 

  8. Wittschieber D, Schulz R, Vieth V, Kuppers M, Bajanowski T, Ramsthaler F et al (2014) The value of sub-stages and thin slices for the assessment of the medial clavicular epiphysis: a prospective multi-center CT study. Forensic Sci Med Pathol 10:163–169

    Article  PubMed  Google Scholar 

  9. Wittschieber D, Ottow C, Vieth V, Kuppers M, Schulz R, Hassu J et al (2014) Projection radiography of the clavicle: still recommendable for forensic age diagnostics in living individuals? Int J Legal Med 129:187–193

    Article  PubMed  Google Scholar 

  10. Ramsthaler F, Proschek P, Betz W, Verhoff MA (2009) How reliable are the risk estimates for X-ray examinations in forensic age estimations? A safety update. Int J Legal Med 123:199–204

    Article  CAS  PubMed  Google Scholar 

  11. Schulz R, Zwiesigk P, Schiborr M, Schmidt S, Schmeling A (2008) Ultrasound studies on the time course of clavicular ossification. Int J Legal Med 122:163–167

    Article  PubMed  Google Scholar 

  12. Saint-Martin P, Rerolle C, Pucheux J, Dedouit F, Telmon N (2014) Contribution of distal femur MRI to the determination of the 18-year limit in forensic age estimation. Int J Legal Med. doi:10.1007/s00414-014-1020-2

  13. Kramer JA, Schmidt S, Jurgens KU, Lentschig M, Schmeling A, Vieth V (2014) Forensic age estimation in living individuals using 3.0 T MRI of the distal femur. Int J Legal Med 128:509–514

    Article  PubMed  Google Scholar 

  14. Schmidt S, Schiborr M, Pfeiffer H, Schmeling A, Schulz R (2013) Age dependence of epiphyseal ossification of the distal radius in ultrasound diagnostics. Int J Legal Med 127:831–838

    Article  CAS  PubMed  Google Scholar 

  15. Schulz R, Schiborr M, Pfeiffer H, Schmidt S, Schmeling A (2013) Sonographic assessment of the ossification of the medial clavicular epiphysis in 616 individuals. Forensic Sci Med Pathol 9:351–357

    Article  PubMed  Google Scholar 

  16. Castriota-Scanderbeg A, De Micheli V, Scarale MG, Bonetti MG, Cammisa M (1996) Precision of sonographic measurement of articular cartilage: inter- and intraobserver analysis. Skeletal Radiol 25:545–549

    Article  CAS  PubMed  Google Scholar 

  17. Bilgili Y, Hizel S, Kara SA, Sanli C, Erdal HH, Altinok D (2003) Accuracy of skeletal age assessment in children from birth to 6 years of age with the ultrasonographic version of the Greulich-Pyle atlas. J Ultrasound Med 22:683–690

    PubMed  Google Scholar 

  18. Mentzel HJ, Vilser C, Eulenstein M, Schwartz T, Vogt S, Bottcher J et al (2005) Assessment of skeletal age at the wrist in children with a new ultrasound device. Pediatr Radiol 35:429–433

    Article  PubMed  Google Scholar 

  19. Khan KM, Miller BS, Hoggard E, Somani A, Sarafoglou K (2009) Application of ultrasound for bone age estimation in clinical practice. J Pediatr 154:243–247

    Article  PubMed  Google Scholar 

  20. Schulz R, Muhler M, Reisinger W, Schmidt S, Schmeling A (2008) Radiographic staging of ossification of the medial clavicular epiphysis. Int J Legal Med 122:55–58

    Article  PubMed  Google Scholar 

  21. Quirmbach F, Ramsthaler F, Verhoff MA (2009) Evaluation of the ossification of the medial clavicular epiphysis with a digital ultrasonic system to determine the age threshold of 21 years. Int J Legal Med 123:241–245

    Article  PubMed  Google Scholar 

  22. Schmidt S, Schmeling A, Zwiesigk P, Pfeiffer H, Schulz R (2011) Sonographic evaluation of apophyseal ossification of the iliac crest in forensic age diagnostics in living individuals. Int J Legal Med 125:271–276

    Article  PubMed  Google Scholar 

  23. Wagner UA, Diedrich V, Schmitt O (1995) Determination of skeletal maturity by ultrasound: a preliminary report. Skeletal Radiol 24:417–420

    Article  CAS  PubMed  Google Scholar 

  24. Hillewig E, De Tobel J, Cuche O, Vandemaele P, Piette M, Verstraete K (2011) Magnetic resonance imaging of the medial extremity of the clavicle in forensic bone age determination: a new four-minute approach. Eur Radiol 21:757–767

    Article  PubMed  Google Scholar 

  25. Kramer JA, Schmidt S, Jurgens KU, Lentschig M, Schmeling A, Vieth V (2014) The use of magnetic resonance imaging to examine ossification of the proximal tibial epiphysis for forensic age estimation in living individuals. Forensic Sci Med Pathol 10:306–313

    Article  PubMed  Google Scholar 

  26. Dedouit F, Auriol J, Rousseau H, Rouge D, Crubezy E, Telmon N (2012) Age assessment by magnetic resonance imaging of the knee: a preliminary study. Forensic Sci Int 217:231–237

    Article  Google Scholar 

  27. Dvorak J (2009) Detecting over-age players using wrist MRI: science partnering with sport to ensure fair play. Br J Sports Med 43:884–885

    Article  PubMed  Google Scholar 

  28. Dvorak J, George J, Junge A, Hodler J (2007) Application of MRI of the wrist for age determination in international U-17 soccer competitions. Br J Sports Med 41:497–500

    Article  PubMed Central  PubMed  Google Scholar 

  29. Dvorak J, George J, Junge A, Hodler J (2007) Age determination by magnetic resonance imaging of the wrist in adolescent male football players. Br J Sports Med 41:45–52

    Article  PubMed Central  PubMed  Google Scholar 

  30. Schmidt S, Muhler M, Schmeling A, Reisinger W, Schulz R (2007) Magnetic resonance imaging of the clavicular ossification. Int J Legal Med 121:321–324

    Article  PubMed  Google Scholar 

  31. Hillewig E, Degroote J, Van der Paelt T, Visscher A, Vandemaele P, Lutin B et al (2013) Magnetic resonance imaging of the sternal extremity of the clavicle in forensic age estimation: towards more sound age estimates. Int J Legal Med 127:677–689

    Article  CAS  PubMed  Google Scholar 

  32. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Pfeiffer H, Schmeling A (2010) Enhanced possibilities to make statements on the ossification status of the medial clavicular epiphysis using an amplified staging scheme in evaluating thin-slice CT scans. Int J Legal Med 124:321–325

    Article  PubMed  Google Scholar 

  33. Wittschieber D, Vieth V, Timme M, Dvorak J, Schmeling A (2014) Magnetic resonance imaging of the iliac crest: age estimation in under-20 soccer players. Forensic Sci Med Pathol 10:198–202

    Article  PubMed  Google Scholar 

  34. Saint-Martin P, Rerolle C, Dedouit F, Bouilleau L, Rousseau H, Rouge D et al (2013) Age estimation by magnetic resonance imaging of the distal tibial epiphysis and the calcaneum. Int J Legal Med 127:1023–1030

    Article  PubMed  Google Scholar 

  35. Saint-Martin P, Rerolle C, Dedouit F, Rousseau H, Rouge D, Telmon N (2014) Evaluation of an automatic method for forensic age estimation by magnetic resonance imaging of the distal tibial epiphysis–a preliminary study focusing on the 18-year threshold. Int J Legal Med 128:675–683

    Article  PubMed  Google Scholar 

  36. Brogdon BG (2000) Scope of forensic radiology. Crit Rev Diagn Imaging 41:43–67

    Article  CAS  PubMed  Google Scholar 

  37. Sauvegrain J, Nahum H, Carle F (1962) Bone maturation. Importance of the determination of the bone age. Methods of evaluation (general review). Ann Radiol (Paris) 5:535–541

    CAS  Google Scholar 

  38. Sauvegrain J, Nahum H, Bronstein H (1962) Study of bone maturation of the elbow. Ann Radiol (Paris) 5:542–550

    CAS  Google Scholar 

  39. Schmeling A, Schulz R, Reisinger W, Muhler M, Wernecke KD, Geserick G (2004) Studies on the time frame for ossification of the medial clavicular epiphyseal cartilage in conventional radiography. Int J Legal Med 118:5–8

    Article  PubMed  Google Scholar 

  40. Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist. Stanford University Press, Stanford

    Google Scholar 

  41. Pyle SI, Hoerr NL (1969) A radiographic standard of reference for the growing knee. C. C Thomas, Springfield

    Google Scholar 

  42. Tanner JM, Landt KW, Cameron N, Carter BS, Patel J (1983) Prediction of adult height from height and bone age in childhood. A new system of equations (TW Mark II) based on a sample including very tall and very short children. Arch Dis Child 58:767–776

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Bouchard M, Sempe M (2001) Maturos 4.0 CD: un nouvel outil d’évaluation de la maturation squelettique. Biom Hum Anthropol 19:9–12

    Google Scholar 

  44. Sempe M (2004) Détermination d’un ‘‘Age’’ en Pédiatrie. Biom Hum Anthropol 22:99–120

    Google Scholar 

  45. Bassed RB, Briggs C, Drummer OH (2010) Analysis of time of closure of the spheno-occipital synchondrosis using computed tomography. Forensic Sci Int 200:161–164

    Article  PubMed  Google Scholar 

  46. Robinson C, Eisma R, Morgan B, Jeffery A, Graham EA, Black S et al (2008) Anthropological measurement of lower limb and foot bones using multi-detector computed tomography. J Forensic Sci 53:1289–1295

    PubMed  Google Scholar 

  47. Verhoff MA, Ramsthaler F, Krahahn J, Deml U, Gille RJ, Grabherr S et al (2008) Digital forensic osteology-possibilities in cooperation with the Virtopsy project. Forensic Sci Int 174:152–156

    Article  PubMed  Google Scholar 

  48. Fazekas IG, Kâosa F (1978) Forensic fetal osteology. Akadâemiai Kiadâo, Budapest

    Google Scholar 

  49. Maresh MM (1964) Variations in patterns of linear growth and skeletal maturation. Phys Ther 44:881–890

    CAS  PubMed  Google Scholar 

  50. Adalian P, Piercecchi-Marti MD, Bourliere-Najean B, Panuel M, Fredouille C, Dutour O et al (2001) Postmortem assessment of fetal diaphyseal femoral length: validation of a radiographic methodology. J Forensic Sci 46:215–219

    CAS  PubMed  Google Scholar 

  51. Adalian P, Piercecchi-Marti MD, Bourliere-Najean B, Panuel M, Leonetti G, Dutour O (2002) New formula for the determination of fetal age. C R Biol 325:261–269

    Article  PubMed  Google Scholar 

  52. Cameriere R, De Luca S, De Angelis D, Merelli V, Giuliodori A, Cingolani M et al (2012) Reliability of Schmeling’s stages of ossification of medial clavicular epiphyses and its validity to assess 18 years of age in living subjects. Int J Legal Med 126:923–932

    Article  CAS  PubMed  Google Scholar 

  53. Kreitner KF, Schweden FJ, Riepert T, Nafe B, Thelen M (1998) Bone age determination based on the study of the medial extremity of the clavicle. Eur Radiol 8:1116–1122

    Article  CAS  PubMed  Google Scholar 

  54. Schulz R, Muhler M, Mutze S, Schmidt S, Reisinger W, Schmeling A (2005) Studies on the time frame for ossification of the medial epiphysis of the clavicle as revealed by CT scans. Int J Legal Med 119:142–145

    Article  PubMed  Google Scholar 

  55. Schulze D, Rother U, Fuhrmann A, Richel S, Faulmann G, Heiland M (2006) Correlation of age and ossification of the medial clavicular epiphysis using computed tomography. Forensic Sci Int 158:184–189

    Article  PubMed  Google Scholar 

  56. Kellinghaus M, Schulz R, Vieth V, Schmidt S, Schmeling A (2010) Forensic age estimation in living subjects based on the ossification status of the medial clavicular epiphysis as revealed by thin-slice multidetector computed tomography. Int J Legal Med 124:149–154

    Article  PubMed  Google Scholar 

  57. Muhler M, Schulz R, Schmidt S, Schmeling A, Reisinger W (2006) The influence of slice thickness on assessment of clavicle ossification in forensic age diagnostics. Int J Legal Med 120:15–17

    Article  PubMed  Google Scholar 

  58. Wittschieber D, Schulz R, Vieth V, Kuppers M, Bajanowski T, Ramsthaler F et al (2014) Influence of the examiner’s qualification and sources of error during stage determination of the medial clavicular epiphysis by means of computed tomography. Int J Legal Med 128:183–191

    Article  PubMed  Google Scholar 

  59. Keats TE, Anderson MW (2012) Atlas of normal roentgen variants that may simulate disease. Mosby, Philadelphia

    Google Scholar 

  60. Dedouit F, Telmon N, Costagliola R, Otal P, Florence LL, Joffre F et al (2007) New identification possibilities with postmortem multislice computed tomography. Int J Legal Med 121:507–510

    Article  PubMed  Google Scholar 

  61. Dedouit F, Telmon N, Costagliola R, Otal P, Joffre F, Rouge D (2007) Virtual anthropology and forensic identification: report of one case. Forensic Sci Int 173:182–187

    Article  PubMed  Google Scholar 

  62. Barrier P, Dedouit F, Braga J, Joffre F, Rouge D, Rousseau H et al (2009) Age at death estimation using multislice computed tomography reconstructions of the posterior pelvis. J Forensic Sci 54:773–778

    Article  PubMed  Google Scholar 

  63. Dedouit F, Bindel S, Gainza D, Blanc A, Joffre F, Rouge D et al (2008) Application of the Iscan method to two- and three-dimensional imaging of the sternal end of the right fourth rib. J Forensic Sci 53:288–295

    Article  PubMed  Google Scholar 

  64. Telmon N, Gaston A, Chemla P, Blanc A, Joffre F, Rouge D (2005) Application of the Suchey-Brooks method to three-dimensional imaging of the pubic symphysis. J Forensic Sci 50:507–512

    Article  PubMed  Google Scholar 

  65. Chiba F, Makino Y, Motomura A, Inokuchi G, Torimitsu S, Ishii N et al (2014) Age estimation by quantitative features of pubic symphysis using multidetector computed tomography. Int J Legal Med 128:667–673

    Article  PubMed  Google Scholar 

  66. Lopez-Alcaraz M, Gonzalez PM, Aguilera IA, Lopez MB (2014) Image analysis of pubic bone for age estimation in a computed tomography sample. Int J Legal Med 129:335–346

    Article  PubMed  Google Scholar 

  67. Moskovitch G, Dedouit F, Braga J, Rouge D, Rousseau H, Telmon N (2010) Multislice computed tomography of the first rib: a useful technique for bone age assessment. J Forensic Sci 55:865–870

    Article  PubMed  Google Scholar 

  68. Chiba F, Makino Y, Motomura A, Inokuchi G, Torimitsu S, Ishii N et al (2013) Age estimation by multidetector CT images of the sagittal suture. Int J Legal Med 127:1005–1011

    Article  PubMed Central  PubMed  Google Scholar 

  69. Schaefer M, Scheuer L, Black SM (2009) Juvenile osteology: a laboratory and field manual. Academic, London

    Google Scholar 

  70. Minier M, Maret D, Dedouit F, Vergnault M, Mokrane FZ, Rousseau H et al (2014) Fetal age estimation using MSCT scans of deciduous tooth germs. Int J Legal Med 128:177–182

    Article  PubMed  Google Scholar 

  71. Schour I, Massler M (1937) Rate and gradient of growth in human deciduous teeth with special reference to neonatal ring. J Dent Res 16:349–350

    Google Scholar 

  72. Moorrees CF (1964) Dental development—a growth study based on tooth eruption as a measure of physiologic age. Rep Congr Eur Orthod Soc 40:92–106

    CAS  PubMed  Google Scholar 

  73. Moorrees CF, Fanning EA, Hunt EE Jr (1963) Age variation of formation stages for ten permanent teeth. J Dent Res 42:1490–1502

    Article  CAS  PubMed  Google Scholar 

  74. Moorrees CF, Fanning EA, Hunt EE Jr (1963) Formation and resorption of three deciduous teeth in children. Am J Phys Anthropol 21:205–213

    Article  CAS  PubMed  Google Scholar 

  75. Demirjian A (1978) Dental development: index of physiologic maturation. Med Hyg (Geneve) 36:3154–3159

    CAS  Google Scholar 

  76. Demirjian A (1980) Dental development: an index of physiological maturity. Union Med Can 109:832–839

    CAS  PubMed  Google Scholar 

  77. Demirjian A, Goldstein H (1976) New systems for dental maturity based on seven and four teeth. Ann Hum Biol 3:411–421

    Article  CAS  PubMed  Google Scholar 

  78. Willems G (2001) A review of the most commonly used dental age estimation techniques. J Forensic Odontostomatol 19:9–17

    CAS  PubMed  Google Scholar 

  79. Willems G, Van Olmen A, Spiessens B, Carels C (2001) Dental age estimation in Belgian children: Demirjian’s technique revisited. J Forensic Sci 46:893–895

    CAS  PubMed  Google Scholar 

  80. Cameriere R, Ferrante L, Cingolani M (2006) Age estimation in children by measurement of open apices in teeth. Int J Legal Med 120:49–52

    Article  PubMed  Google Scholar 

  81. Mincer HH, Harris EF, Berryman HE (1993) The A.B.F.O. study of third molar development and its use as an estimator of chronological age. J Forensic Sci 38:379–390

    CAS  PubMed  Google Scholar 

  82. Schmeling A, Olze A, Reisinger W, Rosing FW, Geserick G (2003) Forensic age diagnostics of living individuals in criminal proceedings. Homo 54:162–169

    Article  CAS  PubMed  Google Scholar 

  83. Gonsior M, Ramsthaler F, Gehl A, Verhoff MA (2014) Morphology as a cause for different classification of the ossification stage of the medial clavicular epiphysis by ultrasound, computed tomography, and macroscopy. Int J Legal Med 127:1013–1021

    Article  Google Scholar 

  84. Curate F, Albuquerque A, Cunha EM (2013) Age at death estimation using bone densitometry: testing the Fernandez Castillo and Lopez Ruiz method in two documented skeletal samples from Portugal. Forensic Sci Int 226:291–296

    Article  Google Scholar 

  85. Masset C (1971) Erreurs systématiques dans la détermination de l’âge par les sutures crâniennes. Bulletins et mémoires de la société d’anthropologie de Paris 12:85–105

    Article  Google Scholar 

  86. Black S, Aggrawal A, J. P-J (2010) Age Estimation in the Living: the Practitioner’s Guide Wiley-Blackwell, Amsterdam

Download references

Acknowledgments

Sincere appreciation is expressed to Nina Crowte for her assistance in manuscript preparation.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

For this type of study (Retrospective study) formal consent is not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Dedouit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dedouit, F., Saint-Martin, P., Mokrane, FZ. et al. Virtual anthropology: useful radiological tools for age assessment in clinical forensic medicine and thanatology. Radiol med 120, 874–886 (2015). https://doi.org/10.1007/s11547-015-0525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-015-0525-1

Keywords

Navigation