Skip to main content

Advertisement

Log in

Development of an in vitro setup for flow studies in a stented carotid artery bifurcation

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

To investigate flow conditions in a double-layered carotid artery stent, a bench-top in vitro flow setup including a bifurcation phantom was designed and fabricated. The geometry of the tissue-mimicking phantom was based on healthy individuals. Two identical phantoms were created using 3D-printing techniques and molding with PVA-gel. In one of them, a clinically available CGuard double-layer stent was inserted. Measurements were performed using both continuous and pulsatile flow conditions. Blood flow studies were performed using echoPIV: a novel ultrasound-based technique combined with particle image velocimetry. A maximum deviation of 3% was visible between desired and measured flow patterns. The echoPIV measurements showed promising results on visualization and quantification of blood flow in and downstream the stent. Further research could demonstrate the effects of a double-layered stent on blood flow patterns in a carotid bifurcation in detail.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Naylor R, Rantner B, Ancetti S et al (2023) European Society for Vascular Surgery (ESVS) 2023 Clinical practice guidelines on the management of atherosclerotic carotid and vertebral artery disease. Eur J Vasc Surg. https://doi.org/10.1016/j.ejvs.2022.04.011

    Article  Google Scholar 

  2. Spacek M, Veselka J (2014) Carotid artery stenting-historical context, trends, and innovations. Int J Angiol 24:205–209. https://doi.org/10.1055/s-0035-1556842

    Article  Google Scholar 

  3. Mas J-L, Trinquart L, Leys D et al (2008) Endarterectomy Versus Angioplasty in Patients with Symptomatic Severe Carotid Stenosis (EVA-3S) trial: results up to 4 years from a randomised, multicentre trial. Lancet Neurol 7:885–892. https://doi.org/10.1016/S1474-4422(08)70195-9

    Article  PubMed  Google Scholar 

  4. Eckstein HH, Ringleb P, Allenberg JR et al (2008) Results of the Stent-Protected Angioplasty versus Carotid Endarterectomy (SPACE) study to treat symptomatic stenoses at 2 years: a multinational, prospective, randomised trial. Lancet Neurol 7:893–902. https://doi.org/10.1016/S1474-4422(08)70196-0

    Article  PubMed  Google Scholar 

  5. Bonati LH, Dobson J, Featherstone RL et al (2015) Long-term outcomes after stenting versus endarterectomy for treatment of symptomatic carotid stenosis: the International Carotid Stenting Study (ICSS) randomised trial. Lancet 385:529–538. https://doi.org/10.1016/S0140-6736(14)61184-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brott TG, Hobson RW, Howard G et al (2010) Stenting versus endarterectomy for treatment of carotid-artery stenosis. N Engl J Med 363:11–23. https://doi.org/10.1056/NEJMoa1208410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Markus HS, Clifton A, Buckenham T, Brown MM (1994) Carotid angioplasty. Detection of embolic signals during and after the procedure. Stroke 25:2403–2406

    Article  CAS  PubMed  Google Scholar 

  8. Ierardi AM, Angileri SA, Brambillasca PM et al (2019) In-stent restenosis associated with dual-layer Roadsaver carotid artery stent: a retrospective single-center study. Radiol Medica 124:704–709. https://doi.org/10.1007/s11547-019-01019-7

    Article  Google Scholar 

  9. De Santis G, Trachet B, Conti M, et al (2013) A computational study of the hemodynamic impact of open- versus closed-cell stent design in carotid artery stenting. Artif Organs 37. https://doi.org/10.1111/aor.12046

  10. Wissgott C, Schmidt W, Brandt-Wunderlich C et al (2017) Clinical results and mechanical properties of the carotid CGUARD double-layered embolic prevention stent. J Endovasc Ther 24:130–137. https://doi.org/10.1177/1526602816671134

    Article  PubMed  Google Scholar 

  11. Wissgott C, Brandt-Wunderlich C, Kopetsch C et al (2019) Initial clinical results and in vitro testing of the new CGuard MicroNet-covered “one-size-fits-all” carotid stent. J Endovasc Ther. https://doi.org/10.1177/1526602819849078

    Article  PubMed  Google Scholar 

  12. Kim HB, Hertzberg JR, Shandas R (2004) Development and validation of echo PIV. Exp Fluids 36:455–462. https://doi.org/10.1007/s00348-003-0743-5

    Article  Google Scholar 

  13. Bracco (2007) SonoVue ® – liver dynamic contrast enhancement in real time. PDF retrieved from bracco.com on 04-07-2022

  14. Senior R, Becher H, Monaghan M et al (2009) Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr 10:194–212. https://doi.org/10.1093/ejechocard/jep005

    Article  PubMed  Google Scholar 

  15. Voorneveld J, Keijzer LBH, Strachinaru M et al (2019) High-frame-rate echo-particle image velocimetry can measure the high-velocity diastolic flow patterns. Circ Cardiovasc Imaging 12:e008856. https://doi.org/10.1161/CIRCIMAGING.119.008856

    Article  PubMed  Google Scholar 

  16. Leow CH, Bazigou E, Eckersley RJ et al (2015) Flow velocity mapping using contrast enhanced high-frame-rate plane wave ultrasound and image tracking: methods and initial in vitro and in vivo evaluation. Ultrasound Med Biol 41:2913–2925. https://doi.org/10.1016/j.ultrasmedbio.2015.06.012

    Article  PubMed  Google Scholar 

  17. Nie L, Cowell DMJ, Carpenter TM et al (2019) High-frame-rate contrast-enhanced echocardiography using diverging waves: 2-D motion estimation and compensation. Ieee Trans Ultrason Ferroelectr Freq Control 66:359–371. https://doi.org/10.1109/TUFFC.2018.2887224

    Article  PubMed  Google Scholar 

  18. Toulemonde MEG, Corbett R, Papadopoulou V et al (2018) High frame-rate contrast echocardiography: in-human demonstration. JACC Cardiovasc Imaging 11:923–924. https://doi.org/10.1016/j.jcmg.2017.09.011

    Article  PubMed  Google Scholar 

  19. Gates PE, Gurung A, Mazzaro L et al (2018) Measurement of wall shear stress exerted by blowing blood in the human carotid artery: ultrasound Doppler velocimetry and echo particle image velocimetry. Ultrasound Med Biol 44:1392–1401. https://doi.org/10.1016/j.ultrasmedbio.2018.02.013

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gurung A, Gates PE, Mazzaro L et al (2017) Echo particle image velocimetry for estimation of carotid artery wall shear stress: repeatability, reproducibility and comparison with phase-contrast magnetic resonance imaging. Ultrasound Med Biol 43:1618–1627. https://doi.org/10.1016/j.ultrasmedbio.2017.03.020

    Article  PubMed  Google Scholar 

  21. Hoving AM, de Vries EE, Mikhal J et al (2020) A systematic review for the design of in vitro flow studies of the carotid artery bifurcation. Cardiovasc Eng Technol 11:111–127. https://doi.org/10.1007/s13239-019-00448-9

    Article  CAS  PubMed  Google Scholar 

  22. Claridge MW, Bate GR, Hoskins PR et al (2009) Measurement of arterial stiffness in subjects with vascular disease: are vessel wall changes more sensitive than increase in intima-media thickness? Atherosclerosis 205:477–480. https://doi.org/10.1016/j.atherosclerosis.2008.12.030

    Article  CAS  PubMed  Google Scholar 

  23. Selzer RH, Mack WJ, Lee PL et al (2001) Improved common carotid elasticity and intima-media thickness measurements from computer analysis of sequential ultrasound frames. Atherosclerosis 154:185–193. https://doi.org/10.1016/S0021-9150(00)00461-5

    Article  CAS  PubMed  Google Scholar 

  24. Prince JL, Links JM (2013) 'The physics of ultrasound' in Prince and Links Medical imaging signals and systems. Pearson Education, p 327

  25. Bharadvaj BK, Mabon RF, Giddens DP (1982) Steady flow in a model of the human carotid bifurcation. Part I—flow visualization. J Biomech 15:349–362. https://doi.org/10.1016/0021-9290(82)90057-4

    Article  CAS  PubMed  Google Scholar 

  26. Smith RF, Rutt BK, Fox AJ et al (1996) Geometric characterization of stenosed human carotid arteries. Acad Radiol 3:898–911. https://doi.org/10.1016/S1076-6332(96)80297-2

    Article  CAS  PubMed  Google Scholar 

  27. Chu KC, Rutt BK (1997) Polyvinyl alcohol cryogel : an ideal phantom material for MR studies of arterial flow and elasticity. Magn Reson Med 37:314–319

    Article  CAS  PubMed  Google Scholar 

  28. Surry KJM, Austin HJB, Fenster A, Peters TM (2004) Poly(vinyl alcohol) cryogel phantoms for use in ultrasound and MR imaging. Phys Med Biol 49:5529–5546. https://doi.org/10.1088/0031-9155/49/24/009

    Article  CAS  PubMed  Google Scholar 

  29. Hoi Y, Wasserman BA, Xie YJ et al (2010) Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol Meas 31:291–302. https://doi.org/10.1088/0967-3334/31/3/002

    Article  PubMed  PubMed Central  Google Scholar 

  30. Voorneveld J, Engelhard S, Vos HJ et al (2018) High-frame-rate contrast-enhanced ultrasound for velocimetry in the human abdominal aorta. IEEE Trans Ultrason Ferroelectr Freq Control 65:2245–2254. https://doi.org/10.1109/TUFFC.2018.2846416

    Article  PubMed  Google Scholar 

  31. Hoving AM, Voorneveld J, Mikhal J et al (2021) In vitro performance of echoPIV for assessment of laminar flow profiles in a carotid artery stent. J Med Imaging 8. https://doi.org/10.1117/1.jmi.8.1.017001

  32. Thielicke W, Stamhuis EJ (2014) PIVlab - towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J Open Res Softw 2. https://doi.org/10.5334/jors.bl

  33. Voorneveld J, Muralidharan A, Hope T et al (2018) High frame rate ultrasound particle image velocimetry for estimating high velocity flow patterns in the left ventricle. IEEE Trans Ultrason Ferroelectr Freq Control 65:2222–2232. https://doi.org/10.1109/tuffc.2017.2786340

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all contributors to this paper for their effort and enthusiasm to contribute. We thank InspireMD for their collaboration in the form of the double-layered CGuard stenting system. Thanks to the Erasmus MC Thoraxcenter and the multi-modality medical imaging group of the University of Twente for their technical knowledge and feedback and the use of their ultrasound equipment. Special thanks to Jaap Greve and Remco Liefers for your help in the radiographical suite of the TechMed Centre. Also, thanks to the Robotics and Mechatronics research group at the University of Twente, especially to Sander Smits, Gerben te Riet o/g Scholten, and Marcel Welleweerd for their support in the lab.

Funding

This research was financially supported by the Stichting TWIN (Foundation TWIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid M. Hoving.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoving, A.M., Mikhal, J., Kuipers, H. et al. Development of an in vitro setup for flow studies in a stented carotid artery bifurcation. Med Biol Eng Comput 62, 1165–1176 (2024). https://doi.org/10.1007/s11517-023-02977-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02977-x

Keywords

Navigation