Skip to main content

Advertisement

Log in

A Preliminary Study of Bending Stiffness Alteration in Shape Changing Nitinol Plates for Fracture Fixation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Nitinol is a promising biomaterial based on its remarkable shape changing capacity, biocompatibility, and resilient mechanical properties. Until now, very limited applications have been tested for the use of Nitinol plates for fracture fixation in orthopaedics. Newly designed fracture-fixation plates are tested by four-point bending to examine a change in equivalent bending stiffness before and after shape transformation. The goal of stiffness alterable bone plates is to optimize the healing process during osteosynthesis in situ that is customized in time of onset, percent change as well as being performed non-invasively for the patient. The equivalent bending stiffness in plates of varying thicknesses changed before and after shape transformation in the range of 24–73% (p values <0.05 for all tests). Tests on a Nitinol plate of 3.0 mm increased in stiffness from 0.81 to 0.98 Nm2 (corresponding standard deviation 0.08 and 0.05) and shared a good correlation to results from numerical calculation. The stiffness of the tested fracture-fixation plates can be altered in a consistent matter that would be predicted by determining the change of the cross-sectional area moment of inertia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Augat, P., U. Simon, A. Liedert, and L. Claes. Mechanics and mechano-biology of fracture healing in normal and osteoporotic bone. Osteoporos. Int. 16(Suppl 2):S36–S43, 2005.

    Article  PubMed  Google Scholar 

  2. Bottlang, M., M. Lesser, J. Koerber, J. Doornink, R. B. von, P. Augat, D. C. Fitzpatrick, S. M. Madey, and J. L. Marsh. Far cortical locking can improve healing of fractures stabilized with locking plates. J. Bone Joint Surg. Am. 92:1652–1660, 2010.

    Article  PubMed  Google Scholar 

  3. Braun, J. T., J. L. Hines, E. Akyuz, C. Vallera, and J. W. Ogilvie. Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis. Spine (Phila Pa 1976) 31:1776–1782, 2006.

    Google Scholar 

  4. Chen, G., F. Niemeyer, T. Wehner, U. Simon, M. A. Schuetz, M. J. Pearcy, and L. E. Claes. Simulation of the nutrient supply in fracture healing. J. Biomech. 42:2575–2583, 2009.

    Article  PubMed  CAS  Google Scholar 

  5. Claes, L., R. Blakytny, M. Gockelmann, M. Schoen, A. Ignatius, and B. Willie. Early dynamization by reduced fixation stiffness does not improve fracture healing in a rat femoral osteotomy model. J. Orthop. Res. 27:22–27, 2009.

    Article  PubMed  Google Scholar 

  6. Claes, L. E., H. J. Wilke, P. Augat, S. Rubenacker, and K. J. Margevicius. Effect of dynamization on gap healing of diaphyseal fractures under external fixation. Clin. Biomech. (Bristol, Avon) 10:227–234, 1995.

    Article  Google Scholar 

  7. Epari, D. R., H. Schell, H. J. Bail, and G. N. Duda. Instability prolongs the chondral phase during bone healing in sheep. Bone 38:864–870, 2006.

    Article  PubMed  Google Scholar 

  8. Gardner, M. J., S. E. Nork, P. Huber, and J. C. Krieg. Less rigid stable fracture fixation in osteoporotic bone using locked plates with near cortical slots. Injury 41:652–656, 2010.

    Article  PubMed  Google Scholar 

  9. Gautier, E., and C. Sommer. Guidelines for the clinical application of the LCP. Injury 34(Suppl 2):B63–B76, 2003.

    Article  PubMed  Google Scholar 

  10. Grigoriev, I. S., E. Z. Meilikov, and A. A. Radzig. Friction, Chapter 6. In: Handbook of Physical Quantities, 1st edn. CRC Press, 1997, pp. 147–156. ISBN: 0-8493-2861-6.

  11. Hontzsch, D., and S. Weller. External fixation of bones (fixateur externe) in fracture treatment. Versicherungsmedizin 48:96–100, 1996.

    PubMed  CAS  Google Scholar 

  12. Kauffman, G. B., and I. Mayo. The story of nitinol: the serendipitous discovery of the memory metal and its applications. Chem. Educator 2:1–21, 1996.

    Article  Google Scholar 

  13. Lienau, J., H. Schell, G. N. Duda, P. Seebeck, S. Muchow, and H. J. Bail. Initial vascularization and tissue differentiation are influenced by fixation stability. J. Orthop. Res. 23:639–645, 2005.

    Article  PubMed  Google Scholar 

  14. Müller, C. W., R. Pfeifer, T. El-Kashef, C. Hurschler, D. Herzog, C. Krettek, and T. Gösling. Electromagnetic induction heating of an orthopaedic nickel-titanium shape memory device. J Orthop Res 21:110, 2010.

    Google Scholar 

  15. Otsuka, K., and T. Kakeshita. Science and technology of shape-memory alloys: new developments. MRS Bull. 27:91–100, 2002.

    Article  Google Scholar 

  16. Pandis, N., A. Polychronopoulou, and T. Eliades. Alleviation of mandibular anterior crowding with copper-nickel-titanium vs nickel-titanium wires: a double-blind randomized control trial. Am. J. Orthod. Dentofacial Orthop. 136:152–157, 2009.

    Article  PubMed  Google Scholar 

  17. Peitsch, T., A. Klocke, B. Kahl-Nieke, O. Prymak, and M. Epple. The release of nickel from orthodontic NiTi wires is increased by dynamic mechanical loading but not constrained by surface nitridation. J. Biomed. Mater. Res. A 82:731–739, 2007.

    PubMed  CAS  Google Scholar 

  18. Pelton, A. R., V. Schroeder, M. R. Mitchell, X. Y. Gong, M. Barney, and S. W. Robertson. Fatigue and durability of Nitinol stents. J. Mech. Behav. Biomed. Mater. 1:153–164, 2008.

    Article  PubMed  CAS  Google Scholar 

  19. Pfeifer, R., D. Herzog, M. Hustedt, and S. Barcikowski. Pulsed ND:YAG laser cutting of NiTi shape memory alloys—influence of process parameters. J Mater Process Technol 21:110, 2010.

    Google Scholar 

  20. Pfeifer, R., D. Herzog, and O. Meier. Laser welding of shape memory alloys for medical applications. In: International Congress on Applications of Lasers & Electro-Optics, 2008, pp. 288–294.

  21. Prymak, O., D. Bogdanski, M. Koller, S. A. Esenwein, G. Muhr, F. Beckmann, T. Donath, M. Assad, and M. Epple. Morphological characterization and in vitro biocompatibility of a porous nickel-titanium alloy. Biomaterials 26:5801–5807, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Stoffel, K., G. Booth, S. M. Rohrl, and M. Kuster. A comparison of conventional versus locking plates in intraarticular calcaneus fractures: a biomechanical study in human cadavers. Clin. Biomech. (Bristol, Avon) 22:100–105, 2007.

    Article  Google Scholar 

  23. Tang, R. G., K. R. Dai, and Y. Q. Chen. Application of a NiTi staple in the metatarsal osteotomy. Biomed. Mater. Eng. 6:307–312, 1996.

    PubMed  CAS  Google Scholar 

  24. Tarnita, D., D. N. Tarnita, L. Hacman, C. Copilus, and C. Berceanu. In vitro experiment of the modular orthopedic plate based on Nitinol, used for human radius bone fractures. Rom. J. Morphol. Embryol. 51:315–320, 2010.

    PubMed  Google Scholar 

  25. Verschuur, E. M., A. Repici, E. J. Kuipers, E. W. Steyerberg, and P. D. Siersema. New design esophageal stents for the palliation of dysphagia from esophageal or gastric cardia cancer: a randomized trial. Am. J. Gastroenterol. 103:304–312, 2008.

    Article  PubMed  Google Scholar 

  26. Wever, D. J., J. A. Elstrodt, A. G. Veldhuizen, and J. R. Horn. Scoliosis correction with shape-memory metal: results of an experimental study. Eur. Spine J. 11:100–106, 2002.

    Article  PubMed  CAS  Google Scholar 

  27. Wu, W., M. Qi, X. P. Liu, D. Z. Yang, and W. Q. Wang. Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis. J. Biomech. 40:3034–3040, 2007.

    Article  PubMed  Google Scholar 

  28. Xiong, Y., Y. Zhao, Z. Wang, Q. Du, W. Chen, and A. Wang. Comparison of a new minimum contact locking plate and the limited contact dynamic compression plate in an osteoporotic fracture model. Int Orthop 33:1415–1419, 2009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This research project was funded by the Collaborative Research Center 599 for Biomedical Technology, a Center of the German Research Foundation (DFG). The following author, Ronny Pfeifer, made an equal contribution to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Olender.

Additional information

Associate Editor Sean S. Kohles oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olender, G., Pfeifer, R., Müller, C.W. et al. A Preliminary Study of Bending Stiffness Alteration in Shape Changing Nitinol Plates for Fracture Fixation. Ann Biomed Eng 39, 1546–1554 (2011). https://doi.org/10.1007/s10439-011-0257-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0257-x

Keywords

Navigation