Skip to main content
Log in

A spatiotemporal analysis of the left coronary artery biomechanics using fluid–structure interaction models

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Biomechanics plays a critical role in coronary artery disease development. FSI simulation is commonly used to understand the hemodynamics and mechanical environment associated with atherosclerosis pathology. To provide a comprehensive characterization of patient-specific coronary biomechanics, an analysis of FSI simulation in the spatial and temporal domains was performed. In the current study, a three-dimensional FSI model of the LAD coronary artery was built based on a patient-specific geometry using COMSOL Multiphysics. The effect of myocardial bridging was simulated. Wall shear stress and its derivatives including time-averaged wall shear stress, wall shear stress gradient, and OSI were calculated across the cardiac cycle in multiple locations. Arterial wall strain (radial, circumferential, and longitudinal) and von Mises stress were calculated. To assess perfusion, vFFR was calculated. The results demonstrated the FSI model could identify regional and transient differences in biomechanical parameters within the coronary artery. The addition of myocardial bridging caused a notable change in von Mises stress and an increase in arterial strain during systole. The analysis performed in this manner takes greater advantage of the information provided in the space and time domains and can potentially assist clinical evaluation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

LAD:

Left anterior descending coronary artery

CFD:

Computational fluid dynamics

FSI:

Fluid–structure interaction

OSI:

Oscillatory shear index

vFFR:

Virtual fractional flow reserve

FFR:

Fractional flow reserve

CTA:

Computed tomography angiography

WSS:

Wall shear stress

References

  1. Xu J, Murphy SL, Kockanek KD, Arias E (2020) Mortality in the United States,. NCHS Data Brief 355:1–8

    Google Scholar 

  2. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, Van Wagner LB, Wang NY, Tsao CW, American Heart Association Council on Epidemiology, Prevention Statistics Committee, Stroke Statistics Subcommittee (2021) Heart Disease and Stroke Statistics—2021 Update: a report from the American Heart Association. Circulation 143(8):e254–e743

    Article  PubMed  Google Scholar 

  3. Koeppen BM, Stanton BA (2009) Berne & Levy Physiology, Updated. E-Book, Elsevier Health Sciences

    Google Scholar 

  4. Dong J, Sun Z, Inthavong K, Tu J (2015) Fluid–structure interaction analysis of the left coronary artery with variable angulation. Comput Methods Biomech Biomed Engin 18(14):1500–1508

    Article  PubMed  Google Scholar 

  5. Pinho N, Castro CF, António CC, Bettencourt N, Sousa LC, Pinto SIS (2019) Correlation between geometric parameters of the left coronary artery and hemodynamic descriptors of atherosclerosis: FSI and statistical study. Med Biol Eng Compu 57(3):715–729

    Article  CAS  Google Scholar 

  6. He X, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng 118(1):74–82

    Article  CAS  PubMed  Google Scholar 

  7. Kleinstreuer C, Hyun S, Buchanan J, Longest P, Archie JP Jr, Truskey GA (2001) Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng 29(1):1–64

    Article  CAS  PubMed  Google Scholar 

  8. Xie X, Wang Y, Zhu H, Zhou J (2014) Computation of hemodynamics in tortuous left coronary artery: a morphological parametric study. J Biomech Eng 136(10):101006

  9. Rikhtegar F, Knight JA, Olgac U, Saur SC, Poulikakos D, Marshall W Jr, Cattin PC, Alkadhi H, Kurtcuoglu V (2012) Choosing the optimal wall shear parameter for the prediction of plaque location—a patient-specific computational study in human left coronary arteries. Atheroscler 221(2):432–437

    Article  CAS  Google Scholar 

  10. Cunningham KS, Gotlieb AI (2005) The role of shear stress in the pathogenesis of atherosclerosis. Lab Invest 85(1):9–23

    Article  CAS  PubMed  Google Scholar 

  11. Gibson CM, Diaz L, Kandarpa K, Sacks FM, Pasternak RC, Sandor T, Feldman C, Stone PH (1993) Relation of vessel wall shear stress to atherosclerosis progression in human coronary arteries. Arterioscler Thromb J Vasc Biol 13(2):310–315

    Article  CAS  Google Scholar 

  12. Peiffer V, Sherwin SJ, Weinberg PD (2013) Does low and oscillatory wall shear stress correlate spatially with early atherosclerosis? A systematic review. Cardiovasc Res 99(2):242–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chaichana T, Sun Z, Jewkes J (2012) Computational fluid dynamics analysis of the effect of plaques in the left coronary artery. Comput Math Methods Med 2012:1–9

    Article  Google Scholar 

  14. Wang X, Peng C, Liu X, Pan Z (2018) Functional assessment of stenotic coronary artery in 3D geometric reconstruction from fusion of intravascular ultrasound and X-ray angiography. IEEE Access 6:53330–53341

    Article  Google Scholar 

  15. Zhang JM, Luo T, Tan SY, Lomarda AM, Wong ASL, Keng FYJ, Allen JC, Huo Y, Su B, Zhao X (2015) Hemodynamic analysis of patient-specific coronary artery tree. Int J Numer Methods Biomed Eng 31(4):e02708

    Article  Google Scholar 

  16. Gao H, Long Q, Graves M, Gillard JH, Li Z-Y (2009) Carotid arterial plaque stress analysis using fluid–structure interactive simulation based on in-vivo magnetic resonance images of four patients. J Biomech 42(10):1416–1423

    Article  PubMed  Google Scholar 

  17. Meza D, Rubenstein DA, Yin W (2018) A fluid–structure interaction model of the left coronary artery. J Biomech Eng 140(12):121006

  18. Tang D, Yang C, Mondal S, Liu F, Canton G, Hatsukami TS, Yuan C (2008) A negative correlation between human carotid atherosclerotic plaque progression and plaque wall stress: in vivo MRI-based 2D/3D FSI models. J Biomech 41(4):727–736

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang C, Tang D, Yuan C, Hatsukami TS, Zheng J, Woodard PK (2007) In vivo/ex vivo MRI-based 3D non-Newtonian FSI models for human atherosclerotic plaques compared with fluid/wall-only models. Comput Model Eng Sci: CMES 19(3):233

    PubMed  Google Scholar 

  20. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695

    Article  CAS  PubMed  Google Scholar 

  21. Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circ 105(9):1135–1143

    Article  CAS  Google Scholar 

  22. Tang D, Yang C, Kobayashi S, Ku DN (2004) Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid-structure interactions (FSI) models. J Biomech Eng 126(3):363–370

    Article  PubMed  Google Scholar 

  23. Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C (2004) 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann Biomed Eng 32(7):947–960

    Article  PubMed  Google Scholar 

  24. Bluestein D, Alemu Y, Avrahami I, Gharib M, Dumont K, Ricotta JJ, Einav S (2008) Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech 41(5):1111–1118

    Article  PubMed  Google Scholar 

  25. Karimi A, Navidbakhsh M, Razaghi R (2014) Plaque and arterial vulnerability investigation in a three-layer atherosclerotic human coronary artery using computational fluid-structure interaction method. J Appl Phys 116(6):064701

    Article  Google Scholar 

  26. Assemat P, Hourigan K (2013) 2013, “Evolution and rupture of vulnerable plaques: a review of mechanical effects,.” ChronoPhysiol Ther 3:23–40

    Google Scholar 

  27. Wang Y, Qiu J, Luo S, Xie X, Zheng Y, Zhang K, Ye Z, Liu W, Gregersen H, Wang G (2016) High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis. Regen Biomaterials 3(4):257–267

    Article  Google Scholar 

  28. Liang X, Xenos M, Alemu Y, Rambhia SH, Lavi I, Kornowski R, Gruberg L, Fuchs S, Einav S, Bluestein D (2013) Biomechanical factors in coronary vulnerable plaque risk of rupture: intravascular ultrasound-based patient-specific fluid–structure interaction studies. Coron Artery Dis 24(2):75–87

    Article  PubMed  Google Scholar 

  29. Tang D, Yang C, Zheng J, Woodard PK, Saffitz JE, Sicard GA, Pilgram TK, Yuan C (2005) Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. J Biomech Eng 127(7):1185–94

    Article  PubMed  Google Scholar 

  30. Rambhia S, Liang X, Xenos M, Alemu Y, Maldonado N, Kelly A, Chakraborti S, Weinbaum S, Cardoso L, Einav S (2012) Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid–structure interaction study. Ann Biomed Eng 40(7):1443–1454

    Article  CAS  PubMed  Google Scholar 

  31. Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P (2019) Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 40(41):3421–3433

    Article  PubMed  PubMed Central  Google Scholar 

  32. Versteylen MO, Kietselaer BL, Dagnelie PC, Joosen IA, Dedic A, Raaijmakers RH, Wildberger JE, Nieman K, Crijns HJ, Niessen WJ (2013) Additive value of semiautomated quantification of coronary artery disease using cardiac computed tomographic angiography to predict future acute coronary syndrome. J Am Coll Cardiol 61(22):2296–2305

    Article  PubMed  Google Scholar 

  33. Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, Bruyne BD, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park S-J, Christiansen EH, Kaltoft A, Lassen JF, Bøtker HE, Achenbach S (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease. J Am Coll Cardiol 63(12):1145–1155

  34. Johnson NP, Jeremias A, Zimmermann FM, Adjedj J, Witt N, Hennigan B, Koo BK, Maehara A, Matsumura M, Barbato E (2016) Continuum of vasodilator stress from rest to contrast medium to adenosine hyperemia for fractional flow reserve assessment. JACC: Cardiovasc Interv 9(8):757–767

    PubMed  Google Scholar 

  35. Morris PD, van de Vosse FN, Lawford PV, Hose DR, Gunn JP (2015) “Virtual”(computed) fractional flow reserve: current challenges and limitations. JACC: Cardiovasc Interv 8(8):1009–1017

    PubMed  Google Scholar 

  36. Shlofmitz E, Jeremias A (2017) FFR in 2017: current status in PCI management. American College of Cardiology. Available online at: https://www.acc.org/latest-in-cardiology/articles/2017/05/25/08/34/ffr-in-2017-current-status-in-pci-management. Accessed 6 Dec 2021

  37. Angelini P, Velasco JA, Flamm S (2002) Coronary anomalies. Circ 105(20):2449–2454

    Article  Google Scholar 

  38. Kanwal A, Shah A (2020) Myocardial bridging in adults. American College of Cardiology, Washington, DC

  39. Corban MT, Hung OY, Eshtehardi P, Rasoul-Arzrumly E, McDaniel M, Mekonnen G, Timmins LH, Lutz J, Guyton RA, Samady H (2014) Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies. J Am Coll Cardiol 63(22):2346–2355

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ge J, Erbel R, Görge G, Haude M, Meyer J (1995) High wall shear stress proximal to myocardial bridging and atherosclerosis: intracoronary ultrasound and pressure measurements. Br Heart J 73(5):462–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Klues HG, Schwarz ER, Dahl JV, Reffelmann T, Reul H, Potthast K, Schmitz C, Minartz J, Krebs W, Hanrath I (1997) Disturbed intracoronary hemodynamics in myocardial bridging. Circ 96(9):2905–2913

    Article  CAS  Google Scholar 

  42. Roberts W, Charles SM, Ang C, Holda MK, Walocha J, Lachman N, Tubbs RS, Loukas M (2021) Myocardial bridges: a meta-analysis. Clin Anat 34(5):685–709

    Article  PubMed  Google Scholar 

  43. Herrmann J, Higano ST, Lenon RJ, Rihal CS, Lerman A (2004) Myocardial bridging is associated with alteration in coronary vasoreactivity. Eur Heart J 25(23):2134–2142

    Article  PubMed  Google Scholar 

  44. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fayad ZA, Fuster V, Fallon JT, Jayasundera T, Worthley SG, Helft G, Aguinaldo JG, Badimon JJ, Sharma SK (2000) Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circ 102(5):506–510

    Article  CAS  Google Scholar 

  46. Jiang Y, Zhang J, Zhao W (2015) Effects of the inlet conditions and blood models on accurate prediction of hemodynamics in the stented coronary arteries. AIP Adv 5(5):057109

    Article  Google Scholar 

  47. Marques KM, Spruijt HJ, Boer C, Westerhof N, Visser CA, Visser FC (2002) The diastolic flow-pressure gradient relation in coronary stenoses in humans. J Am Coll Cardiol 39(10):1630–1636

    Article  PubMed  Google Scholar 

  48. Knight J, Olgac U, Saur SC, Poulikakos D, Marshall W Jr, Cattin PC, Alkadhi H, Kurtcuoglu V (2010) Choosing the optimal wall shear parameter for the prediction of plaque location—a patient-specific computational study in human right coronary arteries. Atheroscler 211(2):445–450

    Article  CAS  Google Scholar 

  49. Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast Phys Sci Solids 61(1):1–48

    Google Scholar 

  50. Rivlin RS, Saunders D (1951) Large elastic deformations of isotropic materials. VII. Experiments on the deformation of rubber. Philo Trans Royal Soc London Ser A Math Phys Sci 243(865):251–288

  51. Teng Z, Yuan J, Feng J, Zhang Y, Brown AJ, Wang S, Lu Q, Gillard JH (2015) The influence of constitutive law choice used to characterise atherosclerotic tissue material properties on computing stress values in human carotid plaques. J Biomech 48(14):3912–3921

    Article  PubMed  PubMed Central  Google Scholar 

  52. Teng Z, Zhang Y, Huang Y, Feng J, Yuan J, Lu Q, Sutcliffe MPF, Brown AJ, Jing Z, Gillard JH (2014) Material properties of components in human carotid atherosclerotic plaques: a uniaxial extension study. Acta Biomater 10(12):5055–5063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Halka AT, Turner NJ, Carter A, Ghosh J, Murphy MO, Kirton JP, Kielty CM, Walker MG (2008) The effects of stretch on vascular smooth muscle cell phenotype in vitro. Cardiovasc Pathol 17(2):98–102

    Article  CAS  PubMed  Google Scholar 

  54. Escaned J, Cortés J, Flores A, Goicolea J, Alfonso F, Hernández R, Fernández-Ortiz A, Sabaté M, Bañuelos C, Macaya C (2003) Importance of diastolic fractional flow reserve and dobutamine challenge in physiologic assessment of myocardial bridging. J Am Coll Cardiol 42(2):226–233

    Article  PubMed  Google Scholar 

  55. Wu Q-Y, Xu Z-H (2007) Surgical treatment of myocardial bridging: report of 31 cases. Chin Med J 120(19):1689–1693

    Article  PubMed  Google Scholar 

  56. Papaioannou TG, Stefanadis C (2005) Vascular wall shear stress: basic principles and methods. Hellenic J Cardiol 46(1):9–15

    PubMed  Google Scholar 

  57. Huo Y, Wischgoll T, Kassab GS (2007) Flow patterns in three-dimensional porcine epicardial coronary arterial tree. Am J Physiol-Heart Circ Physiol 293(5):H2959–H2970

    Article  CAS  PubMed  Google Scholar 

  58. Rissland P, Alemu Y, Einav S, Ricotta J, Bluestein D (2009) Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model. J Biomech Eng 131(3):031001

  59. Lembo M, Sicari R, Esposito R, Rigo F, Cortigiani L, Lo Iudice F, Picano E, Trimarco B, Galderisi M (2017) Association between elevated pulse pressure and high resting coronary blood flow velocity in patients with angiographically normal epicardial coronary arteries. J Am Heart Assoc 6(7):e005710

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dhawan SS, Avati Nanjundappa RP, Branch JR, Taylor WR, Quyyumi AA, Jo H, McDaniel MC, Suo J, Giddens D, Samady H (2010) Shear stress and plaque development. Expert Rev Cardiovasc Ther 8(4):545–556

    Article  PubMed  PubMed Central  Google Scholar 

  61. Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Timmins LH, Binongo JNG, Golub LJ, Corban MT, Finn AV, Oshinsk JN, Quyyumi AA, Giddens DP, Samady H (2012) Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J Am Heart Assoc 1(4):e002543

    Article  PubMed  PubMed Central  Google Scholar 

  62. Samady H, Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Maynard C, Timmins LH, Quyyumi AA, Giddens DP (2011) Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circ 124(7):779–788

    Article  CAS  Google Scholar 

  63. Stone PH, Coskun AU, Kinlay S, Clark ME, Sonka M, Wahle A, Ilegbusi OJ, Yeghiazarians Y, Popma JJ, Orav J, Kuntz RE, Feldman CL (2003) Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans. Circulation 108(4):438–444

  64. Xu L, Chen X, Cui M, Ren C, Yu H, Gao W, Li D, Zhao W (2020) The improvement of the shear stress and oscillatory shear index of coronary arteries during enhanced external counterpulsation in patients with coronary heart disease. PLoS ONE 15(3):e0230144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nakazawa G, Yazdani SK, Finn AV, Vorpahl M, Kolodgie FD, Virmani R (2010) Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healing after stent implantation. J Am Coll Cardiol 55(16):1679–1687

    Article  PubMed  Google Scholar 

  66. Schrauwen JT, Schwarz JC, Wentzel JJ, van der Steen AF, Siebes M, Gijsen FJ (2016) The impact of scaled boundary conditions on wall shear stress computations in atherosclerotic human coronary bifurcations. Am J Physiol-Heart Circ Physiol 310(10):H1304–H1312

    Article  PubMed  Google Scholar 

  67. Wentzel JJ, Chatzizisis YS, Gijsen FJ, Giannoglou GD, Feldman CL, Stone PH (2012) Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc Res 96(2):234–243

    Article  CAS  PubMed  Google Scholar 

  68. Soulis J, Fytanidis D, Seralidou K, Giannoglou G (2014) Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations. Hippokratia 18(1):12–16

    PubMed  PubMed Central  Google Scholar 

  69. Ku KD, Giddens DP, Zarins CK, Glagov S (1985) “Pulsatile flow and atherosclerosis in the human carotid bifurcation Positive correlation between plaque location and low oscillating shear stress.” Arterioscler: An Off J Am Heart Assoc, Inc 5(3):293–302

    Article  CAS  Google Scholar 

  70. Pinto S, Campos J (2016) Numerical study of wall shear stress-based descriptors in the human left coronary artery. Comput Methods Biomech Biomed Engin 19(13):1443–1455

    Article  CAS  PubMed  Google Scholar 

  71. Hoogendoorn A, Kok AM, Hartman EM, de Nisco G, Casadonte L, Chiastra C, Coenen A, Korteland S-A, Van der Heiden K, Gijsen FJ (2020) Multidirectional wall shear stress promotes advanced coronary plaque development: comparing five shear stress metrics. Cardiovasc Res 116(6):1136–1146

    Article  CAS  PubMed  Google Scholar 

  72. Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, El Gamal MI (1995) Fractional flow reserve: a useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circ 92(11):3183–3193

    Article  CAS  Google Scholar 

  73. Kay FU, Canan A, Abbara S (2020) Future directions in coronary CT angiography: CT-fractional flow reserve, plaque vulnerability, and quantitative plaque assessment. Korean Circ J 50(3):185

    Article  CAS  PubMed  Google Scholar 

  74. Tu S, Westra J, Adjedj J, Ding D, Liang F, Xu B, Holm NR, Reiber JH, Wijns W (2020) Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation. Eur Heart J 41(34):3271–3279

    Article  PubMed  Google Scholar 

  75. Tu S, Westra J, Yang J, von Birgelen C, Ferrara A, Pellicano M, Nef H, Tebaldi M, Murasato Y, Lansky A (2016) Diagnostic accuracy of fast computational approaches to derive fractional flow reserve from diagnostic coronary angiography: the international multicenter FAVOR pilot study. JACC Cardiovasc Interv 9(19):2024–2035

    Article  PubMed  Google Scholar 

  76. Narula J, Chandrashekhar Y, Ahmadi A, Abbara S, Berman DS, Blankstein R, Leipsic J, Newby D, Nicol ED, Nieman K, Shaw L, Villines TC, Williams M, Hecht HS (2021) SCCT 2021 Expert Consensus Document on Coronary Computed Tomographic Angiography: a report of the society of cardiovascular computed tomography. J Cardiovasc Comput Tomogr 15(3):192–217

    Article  PubMed  Google Scholar 

  77. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circ 87(4):1179–1187

    Article  CAS  Google Scholar 

  78. Finet G, Ohayon J, Rioufol G (2004) Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron Artery Dis 15(1):13–20

    Article  PubMed  Google Scholar 

  79. Vengrenyuk Y, Carlier S, Xanthos S, Cardoso L, Ganatos P, Virmani R, Einav S, Gilchrist L, Weinbaum S (2006) A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc Natl Acad Sci 103(40):14678–14683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Belzacq T, Avril S, Leriche E, Delache A (2012) A numerical parametric study of the mechanical action of pulsatile blood flow onto axisymmetric stenosed arteries. Med Eng Phys 34(10):1483–1495

    Article  PubMed  Google Scholar 

  81. Chen H, Kassab G (2017) Microstructure-based constitutive model of coronary artery with active smooth muscle contraction. Sci Rep 7(1):1–15

    Google Scholar 

  82. Korukonda S, Doyley MM (2012) Visualizing the radial and circumferential strain distribution within vessel phantoms using synthetic-aperture ultrasound elastography. IEEE Trans Ultrason Ferroelectr Freq Control 59(8):1639–1653

    Article  PubMed  Google Scholar 

  83. Patton DM, Li T, Hétu MF, Day AG, Preece E, Matangi MF, Johri AM (2018) Speckle tracking carotid artery circumferential strain is a marker of arterial sclerosis but not coronary atherosis. J Clin Ultrasound 46(9):575–581

    Article  PubMed  Google Scholar 

  84. Løgstrup BB, Høfsten DE, Christophersen TB, Møller JE, Bøtker HE, Pellikka PA, Egstrup K (2012) Correlation between left ventricular global and regional longitudinal systolic strain and impaired microcirculation in patients with acute myocardial infarction. Echocardiogr 29(10):1181–1190

    Article  Google Scholar 

  85. Torii R, Wood NB, Hadjiloizou N, Dowsey AW, Wright AR, Hughes AD, Davies J, Francis DP, Mayet J, Yang G-Z, Thom SAM, Xu XY (2009) Fluid–structure interaction analysis of a patient-specific right coronary artery with physiological velocity and pressure waveforms. Commun Numer Methods Eng 25(5):565–580

  86. Hasan M, Rubenstein DA, Yin W (2013) Effects of cyclic motion on coronary blood flow. J Biomech Eng 135(12):121002

  87. Vignon-Clementel IE, Figueroa C, Jansen K, Taylor C (2010) Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput Methods Biomech Biomed Engin 13(5):625–640

    Article  CAS  PubMed  Google Scholar 

  88. Vignon-Clementel IE, Figueroa CA, Jansen KE, Taylor CA (2006) Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput Methods Appl Mech Eng 195(29–32):3776–3796

    Article  Google Scholar 

  89. Gunasekera J, Avdan G, Lee HF, Kweon S, Klingensmith J (2022) The effects of external pressure on coronary arteries with plaques and its role in coronary artery disease. J Med Eng Technol 46(7):624–632

    Article  PubMed  Google Scholar 

  90. Li Y, Gutiérrez-Chico JL, Holm NR, Yang W, Hebsgaard L, Christiansen EH, Mæng M, Lassen JF, Yan F, Reiber JH (2015) Impact of side branch modeling on computation of endothelial shear stress in coronary artery disease: coronary tree reconstruction by fusion of 3D angiography and OCT. J Am Coll Cardiol 66(2):125–135

    Article  PubMed  Google Scholar 

  91. Guo X, Giddens DP, Molony D, Yang C, Samady H, Zheng J, Mintz GS, Maehara A, Wang L, Pei X, Li Z-Y, Tang D (2018) Combining IVUS and optical coherence tomography for more accurate coronary cap thickness quantification and stress/strain calculations: a patient-specific three-dimensional fluid-structure interaction modeling approach. J Biomech Eng 140(4):041005

  92. Perry R, Joseph MX, Chew DP, Aylward PE, De Pasquale CG (2013) Coronary artery wall thickness of the left anterior descending artery using high resolution transthoracic echocardiography – normal range of values. Echocardiogr 30(7):759–764

    Article  Google Scholar 

  93. Zhu H, Friedman MH (2003) Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arterioscler Thromb Vasc Biol 23(12):2260–2265

    Article  CAS  PubMed  Google Scholar 

  94. Liu X, Wu G, Xu C, He Y, Shu L, Liu Y, Zhang N, Lin C (2017) Prediction of coronary plaque progression using biomechanical factors and vascular characteristics based on computed tomography angiography. Comput Assist Surg 22(sup1):286–294

    Article  Google Scholar 

  95. Valenta J, Vitek K, Cihak R, Konvickova S, Sochor M, Horny L (2002) Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain. Bio-Med Mater Eng 12(2):121–134

    Google Scholar 

  96. Wang L, Zheng J, Maehara A, Yang C, Billiar KL, Wu Z, Bach R, Muccigrosso D, Mintz GS, Tang D (2015) Morphological and stress vulnerability indices for human coronary plaques and their correlations with cap thickness and lipid percent: an IVUS-based fluid-structure interaction multi-patient study. PLoS Comput Biol 11(12):e1004652

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was partially supported by the 5T32GM127253 Scholars in BioMedical Sciences Program at Stony Brook University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yin.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fandaros, M., Li, Y.Y., Cao, J.J. et al. A spatiotemporal analysis of the left coronary artery biomechanics using fluid–structure interaction models. Med Biol Eng Comput 61, 1533–1548 (2023). https://doi.org/10.1007/s11517-023-02791-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02791-5

Keywords

Navigation