Skip to main content
Log in

Automatic directional analysis of cell fluorescence images and morphological modeling of microfilaments

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cytoskeleton and nucleus are two important anatomic components in eukaryotic cells. Cell fluorescence images are employed to study their realignment and deformation during cell extrusion. Quantitative analysis and modeling of cell orientation are investigated in this paper. For orientation measurement, alignment orientation of microfilaments is calculated using structure tensor method. Nuclei is segmented and fitted to ellipses in nuclei images. Based on the fitted ellipse, orientation and aspect ratio of each nucleus are computed. A morphological model is proposed to describe the movement of microfilaments quantitatively. The parameters of the model are determined by in-plane stresses obtained by numerical simulation. The proposed automatic orientation measurement algorithms can help to analyze the relationship between cell orientation and stress qualitatively. The proposed morphological model is the first model to quantitatively describe the relationship of microfilament movement with stress. Experimental results show that cell and nucleus tend to align along in-plane maximum shear stress and the proposed morphological model is a reasonable model for cell movement. The modeling of cell behavior under different stress can facilitate biomedical research such as tissue engineering and cancer analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Candes EJ, Donoho DL (2004) New tight frames of curvelets and optimal representations of objects with piecewise C-2 singularities. Commun Pure Appl Math 57:219–266. https://doi.org/10.1002/cpa.10116

    Article  Google Scholar 

  2. Chen TJ, Wu CC, Su FC (2012) Mechanical models of the cellular cytoskeletal network for the analysis of intracellular mechanical properties and force distributions: a review. Med Eng Phys 34:1375–1386. https://doi.org/10.1016/j.medengphy.2012.08.007

    Article  PubMed  Google Scholar 

  3. Coughlin MF, Stamenovic D (2003) A prestressed cable network model of the adherent cell cytoskeleton. Biophys J 84:1328–1336

    Article  CAS  Google Scholar 

  4. Dvir L, Nissim R, Alvarez-Elizondo MB, Weihs D (2015) Quantitative measures to reveal coordinated cytoskeleton-nucleus reorganization during in vitro invasion of cancer cells. New J Phys 17:043010. https://doi.org/10.1088/1367-2630/17/4/043010

    Article  CAS  Google Scholar 

  5. Fitzgibbon A, Pilu M, Fisher RB (1999) Direct least square fitting of ellipses. IEEE Trans Pattern Anal 21:476–480. https://doi.org/10.1109/34.765658

    Article  Google Scholar 

  6. Fonck E, Feigl GG, Fasel J, Sage D, Unser M, Rufenacht DA, Stergiopulos N (2009) Effect of ageing on elastin functionality in human cerebral arteries. Proceedings of the Asme Summer Bioengineering Conference 2008, Pts a and B, pp 959–960

  7. Gruenbaum Y, Wilson KL, Harel A, Goldberg M, Cohen M (2000) Nuclear Lamins—structural proteins with fundamental functions. J Struct Biol 129:313–323. https://doi.org/10.1006/jsbi.2000.4216

    Article  CAS  PubMed  Google Scholar 

  8. Harris C (1988) A combined corner and edge detector. Proc Alvey Vision Conf 1988:147–151

    Google Scholar 

  9. Hayakawa K, Sato N, Obinata T (2001) Dynamic reorientation of cultured cells and stress fibers under mechanical stress from periodic stretching. Exp Cell Res 268:104–114. https://doi.org/10.1006/excr.2001.5270

    Article  CAS  PubMed  Google Scholar 

  10. He SJ, Liu CL, Li XJ, Ma SP, Huo B, Ji BH (2015) Dissecting collective cell behavior in polarization and alignment on micropatterned substrates. Biophys J 109:489–500. https://doi.org/10.1016/j.bpj.2015.06.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Imhof BA, Aurrand-Lions M (2004) Adhesion mechanisms regulating the migration of monocytes. Nat Rev Immunol 4:432–444. https://doi.org/10.1038/nri1375

    Article  CAS  PubMed  Google Scholar 

  12. Jean RP, Chen CS, Spector AA (2005) Finite-element analysis of the adhesion-cytoskeleton-nucleus mechanotransduction pathway during endothelial cell rounding: axisymmetric model. J Biomech Eng 127:594–600

    Article  Google Scholar 

  13. Jean RP, Gray DS, Spector AA, Chen CS (2004) Characterization of the nuclear deformation caused by changes in endothelial cell shape. J Biomech Eng 126:552–558

    Article  Google Scholar 

  14. Li CM, Huang R, Ding ZH, Gatenby JC, Metaxas DN, Gore JC (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI. IEEE Trans Image Process 20:2007–2016. https://doi.org/10.1109/Tip.2011.2146190

    Article  PubMed  Google Scholar 

  15. Liu AB, Wu HT, Liu CW, Liu CC, Tang CJ, Tsai IT, Sun CK (2015) Application of multiscale entropy in arterial waveform contour analysis in healthy and diabetic subjects. Med Biol Eng Comput 53:89–98

    Article  Google Scholar 

  16. Liu CL, He SJ, Li XJ, Huo B, Ji BH (2016) Mechanics of cell Mechanosensing on patterned substrate. J Appl Mech T ASME 83:051014. https://doi.org/10.1115/1.4032907

    Article  CAS  Google Scholar 

  17. Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat Rev Mol Cell Biol 11:633–643. https://doi.org/10.1038/nrm2957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paul R, Heil P, Spatz JP, Schwarz US (2008) Propagation of mechanical stress through the actin cytoskeleton toward focal adhesions: model and experiment. Biophys J 94:1470–1482. https://doi.org/10.1529/biophysj.107.108688

    Article  CAS  PubMed  Google Scholar 

  19. Rezakhaniha R, Agianniotis A, Schrauwen JTC, Griffa A, Sage D, Bouten CVC, van de Vosse FN, Unser M, Stergiopulos N (2012) Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 11:461–473. https://doi.org/10.1007/s10237-011-0325-z

    Article  CAS  PubMed  Google Scholar 

  20. Ruggiero C, Giacomini M, Rolfe P (1999) Qualitative modelling of the response of cytoskeletal actin filaments in endothelial cells subjected to shear stress. Med Biol Eng Comput 37:659–666

    Article  CAS  Google Scholar 

  21. Sauer RA (2009) Multiscale modelling and simulation of the deformation and adhesion of a single gecko seta. Comput Methods Biomech Biomed Engin 12:627–640. https://doi.org/10.1080/10255840902802917

    Article  PubMed  Google Scholar 

  22. Schmid C, Mohr R, Bauckhage C (2000) Evaluation of interest point detectors. Int J Comput Vis 37:151–172. https://doi.org/10.1023/A:1008199403446

    Article  Google Scholar 

  23. Shamloo A (2014) Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis. Cytoskeleton 71:501–512. https://doi.org/10.1002/cm.21185

    Article  CAS  PubMed  Google Scholar 

  24. Suffoletto K, Ye NN, Meng FJ, Verma D, Hua SZ (2015) Intracellular forces during guided cell growth on micropatterns using FRET measurement. J Biomech 48:627–635. https://doi.org/10.1016/j.jbiomech.2014.12.051

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tambe DT, Hardin CC, Angelini TE, Rajendran K, Park CY, Serra-Picamal X, Zhou EHH, Zaman MH, Butler JP, Weitz DA, Fredberg JJ, Trepat X (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10:469–475. https://doi.org/10.1038/Nmat3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang WJ, Li HQ (2017) Automated segmentation of overlapped nuclei using concave point detection and segment grouping. Pattern Recogn 71:349–360. https://doi.org/10.1016/j.patcog.2017.06.021

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiqi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Li, H., Zhang, W. et al. Automatic directional analysis of cell fluorescence images and morphological modeling of microfilaments. Med Biol Eng Comput 57, 325–337 (2019). https://doi.org/10.1007/s11517-018-1871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1871-7

Keywords

Navigation