Skip to main content
Log in

Transmembrane potential generated by a magnetically induced transverse electric field in a cylindrical axonal model

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

During the electrical stimulation of a uniform, long, and straight nerve axon, the electric field oriented parallel to the axon has been widely accepted as the major field component that activates the axon. Recent experimental evidence has shown that the electric field oriented transverse to the axon is also sufficient to activate the axon, by inducing a transmembrane potential within the axon. The transverse field can be generated by a time-varying magnetic field via electromagnetic induction. The aim of this study was to investigate the factors that influence the transmembrane potential induced by a transverse field during magnetic stimulation. Using an unmyelinated axon model, we have provided an analytic expression for the transmembrane potential under spatially uniform, time-varying magnetic stimulation. Polarization of the axon was dependent on the properties of the magnetic field (i.e., orientation to the axon, magnitude, and frequency). Polarization of the axon was also dependent on its own geometrical (i.e., radius of the axon and thickness of the membrane) and electrical properties (i.e., conductivities and dielectric permittivities). Therefore, this article provides evidence that aside from optimal coil design, tissue properties may also play an important role in determining the efficacy of axonal activation under magnetic stimulation. The mathematical basis of this conclusion was discussed. The analytic solution can potentially be used to modify the activation function in current cable equations describing magnetic stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdeen MA, Stuchly MA (1994) Modeling of magnetic field stimulation of bent neurons. IEEE Trans Biomed Eng 41:1092–1095

    Article  CAS  PubMed  Google Scholar 

  2. Amassian VE, Maccabee PJ, Cracco RQ (1989) Focal stimulation of human peripheral nerve with the magnetic coil: a comparison with electrical stimulation. Exp Neurol 103:282–289

    Article  CAS  PubMed  Google Scholar 

  3. Bardou AL, Chesnais JM, Birkui PJ, Govaere MC, Auger PM, Von Euw D, Degonde J (1990) Directional variability of stimulation threshold measurements in isolated guinea pig cardiomyocytes: relationship with orthogonal sequential defibrillating pulses. Pacing Clin Electrophysiol 13:1590–1595

    Article  CAS  PubMed  Google Scholar 

  4. Barker A, Freeston IL, Garnham CW (1990) Measurement of Cortical and peripheral neural membrane time constant in man using nerve stimulation. J Physiol (Lond) 423:66

    Google Scholar 

  5. Basser PJ, Roth BJ (1991) Stimulation of a myelinated nerve axon by electromagnetic induction. Med Biol Eng Comput 29:261–268

    Article  CAS  PubMed  Google Scholar 

  6. Basser PJ, Roth BJ (2000) New currents in electrical stimulation of excitable tissues. Annu Rev Biomed Eng 2:377–397

    Article  CAS  PubMed  Google Scholar 

  7. Basser PJ, Wijesinghe RS, Roth BJ (1992) The activating function for magnetic stimulation derived from a three-dimensional volume conductor model. IEEE Trans Biomed Eng 39:1207–1210

    Article  CAS  PubMed  Google Scholar 

  8. Berthold CH, Rydmark M (1995) Morphology of normal peripheral axon. In: Waxman SG, Kocsis JD, Stys PK (eds) The axon: structure, function, and pathophysiology. Oxford University Press, Oxford

    Google Scholar 

  9. Carbunaru R, Durand DM (1997) Axonal stimulation under MRI magnetic field z gradients: a modeling study. Magn Reson Med 38:750–758

    Article  CAS  PubMed  Google Scholar 

  10. Cros D, Day TJ, Shahani BT (1990) Spatial dispersion of magnetic stimulation in peripheral nerves. Muscle Nerve 13:1076–1082

    Article  CAS  PubMed  Google Scholar 

  11. Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Mazzone P, Insola A, Tonali PA, Rothwell JC (2004) The physiological basis of transcranial motor cortex stimulation in conscious humans. Clin Neurophysiol 115:255–266

    Article  CAS  PubMed  Google Scholar 

  12. Durand DM (2003) Electric field effects in hyperexcitable neural tissue: a review. Radiat Prot Dosim 106:325–331

    CAS  Google Scholar 

  13. Esselle KP, Stuchly MA (1994) Quasi-static electric field in a cylindrical volume conductor induced by external coils. IEEE Trans Biomed Eng 41:151–158

    Article  CAS  PubMed  Google Scholar 

  14. Esselle KP, Stuchly MA (1995) Cylindrical tissue model for magnetic field stimulation of neurons: effects of coil geometry. IEEE Trans Biomed Eng 42:934–941

    Article  CAS  PubMed  Google Scholar 

  15. Farkas DL, Korenstein R, Malkin S (1984) Electrophotoluminescence and the electrical properties of the photosynthetic membrane. I. Initial kinetics and the charging capacitance of the membrane. Biophys J 45:363–373

    Article  CAS  PubMed  Google Scholar 

  16. Garnsworthy RK, Gully RL, Kenins P, Westerman RA (1988) Transcutaneous electrical stimulation and the sensation of prickle. J Neurophysiol 59:1116–1127

    CAS  PubMed  Google Scholar 

  17. Ghai RS, Bikson M, Durand DM (2000) Effects of applied electric fields on low-calcium epileptiform activity in the CA1 region of rat hippocampal slices. J Neurophysiol 84:274–280

    CAS  PubMed  Google Scholar 

  18. Gielen FL, Cruts HE, Albers BA, Boon KL, Wallinga-de Jonge W, Boom HB (1986) Model of electrical conductivity of skeletal muscle based on tissue structure. Med Biol Eng Comput 24:34–40

    Article  CAS  PubMed  Google Scholar 

  19. Grumet AE, Wyatt JL Jr, Rizzo JF 3rd (2000) Multi-electrode stimulation and recording in the isolated retina. J Neurosci Methods 101:31–42

    Article  CAS  PubMed  Google Scholar 

  20. Knisley SB, Trayanova N, Aguel F (1999) Roles of electric field and fiber structure in cardiac electric stimulation. Biophys J 77:1404–1417

    Article  CAS  PubMed  Google Scholar 

  21. Konings MK (2007) A new method for spatially selective, non-invasive activation of neurons: concept and computer simulation. Med Biol Eng Comput 45:7–24

    Article  PubMed  Google Scholar 

  22. Kotnik T, Miklavcic D (2000) Second-order model of membrane electric field induced by alternating external electric fields. IEEE Trans Biomed Eng 47:1074–1081

    Article  CAS  PubMed  Google Scholar 

  23. Kotnik T, Miklavcic D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J 90:480–491

    Article  CAS  PubMed  Google Scholar 

  24. Kotnik T, Bobanovic F, Miklavcic D (1997) Sensitivity of transmembrane voltage induced by applied electric fields—a theoretical analysis. Bioelectrochem Bioenerg 43:285–291

    Article  CAS  Google Scholar 

  25. Kotnik T, Miklavcic D, Slivnik T (1998) Time course of transmembrane voltage induced by time-varying electric field—a method for theoretical analysis and its application. Bioelectrochem Bioenerg 45:3–16

    Article  CAS  Google Scholar 

  26. Krasteva VT, Papazov SP, Daskalov IK (2003) Peripheral nerve magnetic stimulation: influence of tissue non-homogeneity. Biomed Eng Online 2:19

    Article  PubMed  Google Scholar 

  27. Lee DC, Grill WM (2005) Polarization of a spherical cell in a nonuniform extracellular electric field. Ann Biomed Eng 33:603–615

    Article  PubMed  Google Scholar 

  28. Lontis ER, Nielsen K, Struijk JJ (2009) In vitro magnetic stimulation of pig phrenic nerve with transverse and longitudinal induced electric fields: analysis of the stimulation site. IEEE Trans Biomed Eng 56:500–512

    PubMed  Google Scholar 

  29. Lu H, Chestek CA, Shaw KM, Chiel HJ (2008) Selective extracellular stimulation of individual neurons in ganglia. J Neural Eng 5:287–309

    Article  PubMed  Google Scholar 

  30. Maccabee PJ, Amassian VE, Cracco RQ, Eberle LP, Rudell AP (1991) Mechanisms of peripheral nervous system stimulation using the magnetic coil. Electroencephalogr Clin Neurophysiol Suppl 43:344–361

    CAS  PubMed  Google Scholar 

  31. Maccabee PJ, Amassian VE, Eberle LP, Cracco RQ (1993) Magnetic coil stimulation of straight and bent amphibian and mammalian peripheral nerve in vitro: locus of excitation. J Physiol 460:201–219

    CAS  PubMed  Google Scholar 

  32. Mansfield P, Harvey PR (1993) Limits to neural stimulation in echo-planar imaging. Magn Reson Med 29:746–758

    Article  CAS  PubMed  Google Scholar 

  33. McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23:329–337

    Article  CAS  PubMed  Google Scholar 

  34. Meyerson BA, Linderoth B (2000) Mechanisms of spinal cord stimulation in neuropathic pain. Neurol Res 22:285–292

    CAS  PubMed  Google Scholar 

  35. Miranda PC, Hallett M, Basser PJ (2003) The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy. IEEE Trans Biomed Eng 50:1074–1085

    Article  PubMed  Google Scholar 

  36. Nagarajan SS, Durand DM (1995) Analysis of magnetic stimulation of a concentric axon in a nerve bundle. IEEE Trans Biomed Eng 42:926–933

    Article  CAS  PubMed  Google Scholar 

  37. Nagarajan SS, Durand DM (1996) A generalized cable equation for magnetic stimulation of axons. IEEE Trans Biomed Eng 43:304–312

    Article  CAS  PubMed  Google Scholar 

  38. Olney RK, So YT, Goodin DS, Aminoff MJ (1990) A comparison of magnetic and electrical stimulation of peripheral nerves. Muscle Nerve 13:957–963

    Article  CAS  PubMed  Google Scholar 

  39. Polk C, Song JH (1990) Electric fields induced by low frequency magnetic fields in inhomogeneous biological structures that are surrounded by an electric insulator. Bioelectromagnetics 11:235–249

    Article  CAS  PubMed  Google Scholar 

  40. Polson MJ, Barker AT, Freeston IL (1982) Stimulation of nerve trunks with time-varying magnetic fields. Med Biol Eng Comput 20:243–244

    Article  CAS  PubMed  Google Scholar 

  41. Ranck JB Jr (1975) Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440

    Article  PubMed  Google Scholar 

  42. Ravazzani P, Ruohonen J, Grandori F, Tognola G (1996) Magnetic stimulation of the nervous system: induced electric field in unbounded, semi-infinite, spherical, and cylindrical media. Ann Biomed Eng 24:606–616

    Article  CAS  PubMed  Google Scholar 

  43. Reilly JP (1989) Peripheral nerve stimulation by induced electric currents: exposure to time-varying magnetic fields. Med Biol Eng Comput 27:101–110

    Article  CAS  PubMed  Google Scholar 

  44. Roth BJ, Basser PJ (1990) A model of the stimulation of a nerve fiber by electromagnetic induction. IEEE Trans Biomed Eng 37:588–597

    Article  CAS  PubMed  Google Scholar 

  45. Roth BJ, Cohen LG, Hallett M, Friauf W, Basser PJ (1990) A theoretical calculation of the electric field induced by magnetic stimulation of a peripheral nerve. Muscle Nerve 13:734–741

    Article  CAS  PubMed  Google Scholar 

  46. Ruohonen J, Panizza M, Nilsson J, Ravazzani P, Grandori F, Tognola G (1996) Transverse-field activation mechanism in magnetic stimulation of peripheral nerves. Electroencephalogr Clin Neurophysiol 101:167–174

    Article  CAS  PubMed  Google Scholar 

  47. Schnabel V, Struijk JJ (1999) Magnetic and electrical stimulation of undulating nerve fibres: a simulation study. Med Biol Eng Comput 37:704–709

    Article  CAS  PubMed  Google Scholar 

  48. Schnabel V, Struijk JJ (2001) Evaluation of the cable model for electrical stimulation of unmyelinated nerve fibers. IEEE Trans Biomed Eng 48:1027–1033

    Article  CAS  PubMed  Google Scholar 

  49. Stratton J (1941) Electromagnetic theory. McGraw-Hill, New York

    Google Scholar 

  50. Struijk JJ, Durand DM (1998) Magnetic peripheral nerve stimulation: axial verses transverse fields. In: Proceedings BMES/EMBS, Atlanta, 469 pp

  51. Struijk JJ, Schnabel V (2001) Difference between electrical and magnetic nerve stimulation: A case for transverse field. Proceedings of the 23rd Annual International Conference of IEEE, pp 885–887

  52. Susil R, Semrov D, Miklavcic D (1998) Electric field induced transmembrane potential depends on cell density and organization. Electro Magnetobiol 17:391–399

    Google Scholar 

  53. Teruel MN, Meyer T (1997) Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells. Biophys J 73:1785–1796

    Article  CAS  PubMed  Google Scholar 

  54. Tofts PS, Branston NM (1991) The measurement of electric field, and the influence of surface charge, in magnetic stimulation. Electroencephalogr Clin Neurophysiol 81:238–239

    Article  CAS  PubMed  Google Scholar 

  55. Tuday EC, Olree KS, Horch KW (2006) Differential activation of nerve fibers with magnetic stimulation in humans. BMC Neurosci 7:58

    Article  PubMed  Google Scholar 

  56. Wachner D, Simeonova M, Gimsa J (2002) Estimating the subcellular absorption of electric field energy: equations for an ellipsoidal single shell model. Bioelectrochemistry 56:211–213

    Article  CAS  PubMed  Google Scholar 

  57. While PT, Forbes LK (2004) Electromagnetic fields in the human body due to switched transverse gradient coils in MRI. Phys Med Biol 49:2779–2798

    Article  PubMed  Google Scholar 

  58. Ye H, Cotic M, Carlen PL (2007) Transmembrane potential induced in a spherical cell model under low-frequency magnetic stimulation. J Neural Eng 4:283–293

    Article  PubMed  Google Scholar 

  59. Yu H, Zheng C, Wang Y (2005) A new model and improved cable function for representing the activating peripheral nerves by a transverse electric field during magnetic stimulation. Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, VA

Download references

Acknowledgments

This study was supported by CIHR grants to PC and MGF, as a Canadian Heart and Stroke Foundation (HSF) grant to MGF, and a HSF postdoctoral fellowship to Hui Ye. The authors thank Dr Robert Chen and Dr Stiliyan N. Kalitzin for their valuable comments to improve the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ye.

Appendices

Appendix 1: Expression of vector potential \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} \) in cylindrical coordinates (r′, θ′, z′)

In cylindrical coordinates (r′, θ′, z′) centered at O′, we have

$$ \nabla \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{A} = \left( {{\frac{1}{{{r^{\prime}}}}}{\frac{{\partial A_{{z}^{\prime}}}}{\partial \theta^{\prime}}} - {\frac{{\partial A_{\theta ^{\prime}} }}{\partial z^{\prime}}}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{r}^{\prime}} + \left( {{\frac{{\partial A}_{{r}^{\prime}}}{\partial z^{\prime}}} - {\frac{{\partial A_{z^{\prime}} }}{\partial r^{\prime}}}} \right)\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {{\theta}^{\prime}} + \left[ {{\frac{1}{r^{\prime}}}{\frac{\partial }{\partial r^{\prime}}}(r^{\prime}A_{\theta^{\prime}} ) - {\frac{1}{r^{\prime}}}{\frac{{\partial A_{r^{\prime}} }}{\partial \theta ^{\prime}}}} \right]\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {{z^\prime}}$$
(13)

The magnetic vector potential\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} \) induced by an external current is

$$ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} = {\frac{\mu }{4\pi }}\iiint {{\frac{{\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {J} {\text{d}}v}}{R}}} $$
(14)

where \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {J} \) is the current density; R is the distance between the current element and the target tissue where \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} \) is evaluated; dv is the volume of the element carrying current density \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {J} \); μ is the magnetic conductivity; \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} \) is in the direction of -\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {\theta } ^{\prime} \) and is symmetrical about the OZ′ axis.

$$ A_{r^{\prime}} = 0,\;A_{\theta ^{\prime}} = A,\;A_{z^{\prime}} = 0 $$
(15)

Substituting (15) into (13), we have

$$ \nabla \times \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} = {\frac{1}{r^{\prime}}}{\frac{\partial }{\partial r^{\prime}}}(r^{\prime}A_{\theta ^{\prime}} )\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {z} ^{\prime} $$
(16)

Also

$$ \nabla \times\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{A} =\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{B} = -\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}}{{z} ^{\prime}}B_{0} e^{j\omega t} $$
(17)

From (16) and (17), we have

$$ A_{\theta ^{\prime}} = - \frac{1}{2}r^{\prime}B_{0} e^{j\omega t} + {\frac{CO}{r^{\prime}}} $$
(18)

where CO is a constant. As the current is symmetrical about the Z′ axis. \( A_{{\theta^{\prime}(r^{\prime} = 0)}} \; = \;0. \) Therefore CO = 0. Thus,

$$ A_{\theta ^{\prime}} = - \frac{1}{2}r^{\prime}B_{0} e^{j\omega t} $$
(19)

Appendix 2: Coordinate transformation from cylindrical coordinates (r′, θ′, z′) to (r, θ, z) in the computation of the magnetic vector potential \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} \)

In cylindrical coordinates (r′, θ′, z′) with origin at o′, from Eq. 19, we know

$$ A(r^{\prime}) = 0 $$
(20)
$$ A(\theta ^{\prime}) = - {\frac{{r^{\prime}B_{0} }}{2}} $$
(21)
$$ A(z^{\prime}) = 0 $$
(22)

Here, we have omitted the time factor e jωt to simplify the calculation, which allows us to investigate the “instant” polarization of the axon. The vector potential can be expressed in a Cartesian basis using a matrix transformation

$$ A\left( {x^{\prime},y^{\prime},z^{\prime}} \right) = \left[\begin{array}{lll} {\cos \theta^{\prime}} & - \sin \theta^{\prime} & 0 \\ {\sin \theta^{\prime}} & {\cos \theta^{\prime}} &0 \\ 0 & 0 & 1 \\ \end{array} \right]\left[ \begin{array}{l} 0\\ { - {\frac{{r^{\prime}B_{0} }}{2}}} \\ 0 \\ \end{array}\right] = \left[ \begin{array}{l} {{\frac{{B_{0} r^{\prime}\sin\theta^{\prime}}}{2}}} \\ {{\frac{{B_{0} r^{\prime}\cos\theta^{\prime}}}{2}}} \\ 0 \\\end{array} \right] = \left[ \begin{array}{l}{{\frac{{B_{0} y^{\prime}}}{2}}} \\ {{\frac{{B_{0}x^{\prime}}}{2}}} \\ 0 \\ \end{array} \right] $$
(23)

In Fig. 1, since x′ = x − C, y′ = y, z′ = z, the vector potential \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {A} \) can be expressed in (x, y, z) coordinates

$$ A(x,y,z) = \left[\begin{array}{cc} {{\frac{{B_{0} y}}{2}}}\\ { - {\frac{{B_{0} (x - C)}}{2}}} \\ 0 \\ \end{array} \right]$$
(24)

Expressed in cylindrical coordinates(r, θ, z)

$$ \left[ {\begin{array}{lll} {A_{\rm or} } \\ {A_{{\rm o}\theta }}\\ {A_{\rm oz} } \\ \end{array} } \right] = \left[{\begin{array}{lll} {\cos \theta } & {\sin \theta } & 0 \\ { -\sin \theta } & {\cos \theta } & 0 \\ 0 & 0 & 1 \\ \end{array} }\right]\left[ {\begin{array}{c} {{\frac{{B_{0} y}}{2}}} \\ { -{\frac{{B_{0} (x - C)}}{2}}} \\ 0 \\ \end{array} } \right] =\left[ {\begin{array}{c} {{\frac{{B_{0} }}{2}}C\sin \theta }\\ { - {\frac{{B_{0} }}{2}}(r - C\cos \theta )} \\ 0 \\\end{array} } \right] $$
(25)

Appendix 3: Determining unknown coefficients C n , D n in Eq. 11 using boundary conditions (A)–(D)

As V is bounded at r = 0 and r → ∞ and from Eq. 11, we have

$$ D_{0} = 0 $$
$$ A_{2} = 0 $$

Therefore, expressions for the potential distribution in the extracellular media, the membrane, and in the cytoplasm are

$$ V_{0} = {\frac{{A_{0} }}{r}}\sin \theta $$
(26)
$$ V_{1} = \left( {{\frac{{A_{1} }}{r}} + D_{1} r} \right)\sin \theta $$
(27)
$$ V_{0} = D_{2} r\sin \theta $$
(28)

We substituted A 0r (Eq. 6) and the \( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {r} \) components of ∇V in the three regions into (9) to yield the expressions of the normal components of the electric fields in the three regions:

$$ E_{0r} = - {\frac{{j\omega B_{0} C}}{2}}\sin \theta + {\frac{{A_{0} }}{{r^{2} }}}\sin \theta $$
(29)
$$ E_{1r} = - {\frac{{j\omega B_{0} C}}{2}}\sin \theta + \left( {{\frac{{A_{1} }}{{r^{2} }}} - D_{1} } \right)\sin \theta $$
(30)
$$ E_{2r} = - {\frac{{j\omega B_{0} C}}{2}}\sin \theta - D_{2} \sin \theta $$
(31)

Following boundary condition (A), V is continuous at the extracellular media/membrane (r = R +) and membrane/intracellular cytoplasm interfaces (r = R ),

$$ {\frac{{A_{0} }}{{R_{ + } }}} = {\frac{{A_{1} }}{{R_{ + } }}} + D_{1} R_{ + } $$
(32)
$$ {\frac{{A_{1} }}{{R_{ - } }}} + D_{1} R_{ - } = D_{2} R_{ - } $$
(33)

We then used the boundary condition (B), that the normal components of the current densities are continuous between two different media (Eqs. 1, 2), to obtain the following equations:

$$ S_{0} \left( { - {\frac{{j\omega B_{0} C}}{2}} + {\frac{{A_{0} }}{{R_{ + }^{2} }}}} \right) = S_{1} \left( { - {\frac{{j\omega B_{0} C}}{2}} + {\frac{{A_{1} }}{{R_{ + }^{2} }}} - D_{1} } \right) $$
(34)
$$ S_{1} \left( { - {\frac{{j\omega B_{0} C}}{2}} + {\frac{{A_{1} }}{{R_{ - }^{2} }}} - D_{1} } \right) = S_{2} - \left( {{\frac{{j\omega B_{0} C}}{2}} - D_{2} } \right) $$
(35)

We solved (32), (33), (34) and (35) to get the last four unknown coefficients:

$$ A_{0}\,=\,{\frac{{j\omega B_{0} C}}{2}}{\frac{{R_{ + }^{2} \left[ {\left( {S_{0} + S_{1} } \right)\left( {S_{1} - S_{2} } \right)R_{ - }^{2} + \left( {S_{0} - S_{1} } \right)\left( {S_{1} + S_{2} } \right)R_{ + }^{2} } \right]}}{{\left( {S_{0} - S_{1} } \right)\left( {S_{1} - S_{2} } \right)R_{ - }^{2} + \left( {S_{0} + S_{1} } \right)\left( {S_{1} + S_{2} } \right)R_{ + }^{2} }}} $$
$$ A_{1}\,=\,{\frac{{j\omega B_{0} C}}{2}}{\frac{{2R_{ - }^{2} R_{ + }^{2} S_{0} \left( {S_{1} - S_{2} } \right)}}{{\left( {S_{0} - S_{1} } \right)\left( {S_{1} - S_{2} } \right)R_{ - }^{2} + \left( {S_{0} + S_{1} } \right)\left( {S_{1} + S_{2} } \right)R_{ + }^{2} }}} $$
$$ D_{1}\,=\,-{\frac{{j\omega B_{0} C}}{2}}{\frac{{\left( {S_{0} - S_{1} } \right)\left[ {\left( {S_{1} - S_{2} } \right)R_{ - }^{2} - \left( {S_{1} + S_{2} } \right)R_{ + }^{2} } \right]}}{{\left( {S_{0} - S_{1} } \right)\left( {S_{1} - S_{2} } \right)R_{ - }^{2} + \left( {S_{0} + S_{1} } \right)\left( {S_{1} + S_{2} } \right)R_{ + }^{2} }}} $$
$$ D_{2} = - {\frac{{j\omega B_{0} C}}{2}}{\frac{{\left( {S_{0} - S_{1} } \right)\left( {S_{1} - S_{2} } \right)R_{ - }^{2} + \left[ {S_{0} \left( {S_{2} - 3S_{1} } \right) + S_{1} \left( {S_{1} + S_{2} } \right)} \right]R_{ + }^{2} }}{{\left( {S_{0} - S_{1} } \right)\left( {S_{1} - S_{2} } \right)R_{ - }^{2} + \left( {S_{0} + S_{1} } \right)\left( {S_{1} + S_{2} } \right)R_{ + }^{2} }}} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, H., Cotic, M., Fehlings, M.G. et al. Transmembrane potential generated by a magnetically induced transverse electric field in a cylindrical axonal model. Med Biol Eng Comput 49, 107–119 (2011). https://doi.org/10.1007/s11517-010-0704-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0704-0

Keywords

Navigation