Skip to main content
Log in

Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Background

Curcumin has emerged to be utilized as a superb beneficial agent, due to its naturally occurring anti-oxidant, anti-inflammatory and anti-carcinogenic property.

Methods

The interaction of curcumin with human serum albumin, the main in vivo transporter of exogenous substances, was investigated using absorption spectroscopy, steady-state fluorescence, excited state life-time studies and circular dichroism spectroscopy.

Results

Isothermal titration calorimetry techniques inferred one class of binding site with binding constant ~1.74×105M−1 revealing a strong interaction. The binding profile was analyzed through the evaluation of the thermodynamic parameters, which indicated the involvement of hydrophobic interactions (burial of non-polar group). Fluorescence lifetime of tryptophan residue was observed to decrease to 1.94 ns from 2.84 ns in presence of Curcumin. Percentage of α helicity of human serum albumin was also reduced significantly upon binding with curcumin as evidenced by circular dichroism measurement leading to conformational modification of the protein molecule.

Conclusions

On the basis of such complementary results, it may be concluded that curcumin shows strong binding affinity for human serum albumin, probably at the hydrophobic cavities of the protein and at or around the tryptophan residue. Molecular Docking analysis of HSA and curcumin provided light on the number of binding sites at an atomic level, which were already determined at a molecular level in spectroscopic measurements. Our study unfolds the modes of interaction of curcumin with human serum albumin in the light of different biophysical techniques and molecular modeling analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aggarwal B B, Kumar A, Bharti A C (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res, 23(1A): 363–398

    CAS  PubMed  Google Scholar 

  • Aggarwal M L, Chacko K M, Kuruvilla B T (2016). Systematic and comprehensive investigation of the toxicity of curcuminoidessential oil complex: A bioavailable turmeric formulation. Mol Med Rep, 13(1): 592–604

    CAS  PubMed  Google Scholar 

  • Airinei A, Tigoianu R I, Rusu E, Dorohoi D O (2011). Fluorescence quenching of anthracene by nitroaromatic compounds. Dig J Nanomater Biostruct, 6(3): 1265–1272

    Google Scholar 

  • Basak P, Debnath T, Banerjee R, Bhattacharyya M (2016). Selective binding of divalent cations towardheme proteins. Front Biol, 11(1): 32–42

    Article  CAS  Google Scholar 

  • Basak P, Pattanayak R, Bhattacharyya M (2015). Transition metal induced conformational change of heme proteins. Spectrosc Lett, 48 (5): 324–330

    Article  CAS  Google Scholar 

  • Baskaran N, Manoharan S, Balakrishnan S, Pugalendhi P (2010). Chemopreventive potential of ferulic acid in 7,12-dimethylbenz[a] anthracene-induced mammary carcinogenesis in Sprague-Dawley rats. Eur J Pharmacol, 637(1-3): 22–29

    Article  CAS  PubMed  Google Scholar 

  • Biovia D S (2016). Discovery Studio Modeling Environment, Release 2017. DassaultSystèmes, San Diego, CA

    Google Scholar 

  • Brooks B R, Bruccoleri R E, Olafson B D, States D J, Swaminathan S, Karplus M (1983). CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem, 4 (2): 187–217

    Article  CAS  Google Scholar 

  • Cheng Z J, Zhao H M, Xu Q Y, Liu R (2013). Investigation of the interaction between indigotin and two serum albumins by spectroscopic approaches. JPA, 3(4): 257–269

    CAS  Google Scholar 

  • Dickinson D A, Levonen A L, Moellering D R, Arnold E K, Zhang H, Darley-Usmar V M, Forman H J (2004). Human glutamate cysteine ligase gene regulation through the electrophile response element. Free Radic Biol Med, 37(8): 1152–1159

    Article  CAS  PubMed  Google Scholar 

  • Forli S, Huey R, Pique M E, Sanner M F, Goodsell D S, Olson A J (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nat Protoc, 11(5): 905–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta S C, Prasad S, Kim J H, Patchva S, Webb L J, Priyadarsini I K, Aggarwal B B (2011). Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep, 28(12): 1937–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou T, Zhang W, Huang Q, Xu X (2005). An extended aqueous solvation model based on atom-weighted solvent accessible surface areas: SAWSA v2.0 model. J Mol Model, 11(1): 26–40

    Article  PubMed  Google Scholar 

  • Lee H Y, Kim SW, Lee G H, ChoiMK, Jung HW, Kim Y J, Kwon H J, Chae H J (2016). Turmeric extract and its active compound, curcumin, protect against chronic CCl4-induced liver damage by enhancing antioxidation. BMC Complement Altern Med, 16(1): 316

    Article  PubMed  PubMed Central  Google Scholar 

  • Lehrer S S (1971). Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry, 10(17): 3254–3263

    CAS  PubMed  Google Scholar 

  • Leung M H, Kee T W (2009). Effective stabilization of curcumin by association to plasma proteins: human serum albumin and fibrinogen. Langmuir, 25(10): 5773–5777

    Article  CAS  PubMed  Google Scholar 

  • Maciazek-Jurczyk M, Maliszewska M, Pozycka J, Równicka-Zubik J, Góra A, Sulkowska A (2013). Tamoxifen and curcumin binding to serum albumin. Spectroscopic study. J Mol Struct, 1044: 194–200

    Article  CAS  Google Scholar 

  • Masone D, Chanforan C (2015). Study on the interaction of artificial and natural food colorants with human serum albumin: A computational point of view. Comput Biol Chem, 56: 152–158

    Article  CAS  PubMed  Google Scholar 

  • Mazaheri M, Moosavi-Movahedi A A, Saboury A A, Rezaei M H, Shourian M, Farhadi M, Sheibani N (2015). Curcumin mitigates the fibrillation of human serum albumin and diminishes the formation of reactive oxygen species. Protein Pept Lett, 22(4): 348–353

    Article  CAS  PubMed  Google Scholar 

  • Mothi N, Muthu S A, Kale A, Ahmad B (2015). Curcumin promotes fibril formation in F isomer of human serum albumin via amorphous aggregation. Biophys Chem, 207: 30–39

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak R, Basak P, Sen S, Bhattacharyya M (2016). Interaction of KRAS G-quadruplex with natural polyphenols: A spectroscopic analysis with molecular modeling. Int J Biol Macromol, 89: 228–237

    Article  CAS  PubMed  Google Scholar 

  • Prasad P, Khan I, Kondaiah P, Chakravarty A R (2013). Mitochondriatargeting oxidovanadium(IV) complex as a near-IR light photocytotoxic agent. Chemistry, 19(51): 17445–17455

    Article  CAS  PubMed  Google Scholar 

  • Sahoo B K, Ghosh K S, Dasgupta S (2009). Molecular interactions of isoxazolcurcumin with human serum albumin: spectroscopic and molecular modeling studies. Biopolymers, 91(2): 108–119

    Article  CAS  PubMed  Google Scholar 

  • Salzano A M, Renzone G, Scaloni A, Torreggiani A, Ferreri C, Chatgilialoglu C (2011). Human serum albumin modifications associated with reductive radical stress. Mol Biosyst, 7(3): 889–898

    Article  CAS  PubMed  Google Scholar 

  • Semiz G, Çelik G, Gönen E, Semiz A (2016). Essential oil composition, antioxidant activity and phenolic content of endemic Teucrium alyssifolium Staph. (Lamiaceae). Nat Prod Res, 30(19): 2225–2229

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi M K, Alam P, Chaturvedi S K, Khan R H (2016). Antiamyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int J Biol Macromol, 92: 1220–1228

    Article  CAS  PubMed  Google Scholar 

  • Siddiqi M K, Alam P, Chaturvedi S K, Khan R H (2016). Antiamyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int J Biol Macromol, 92: 1220–1228

    Article  CAS  PubMed  Google Scholar 

  • Singh D V, Bharti S K, Agarwal S, Roy R, Misra K (2014). Study of interaction of human serum albumin with curcumin by NMR and docking. J Mol Model, 20(8): 2365

    Article  PubMed  Google Scholar 

  • Stocker R (2016). Antioxidant defenses in human blood plasma and extra-cellular fluids. Arch Biochem Biophys, 595: 136–139

    Article  CAS  PubMed  Google Scholar 

  • Stocker R (2016). Antioxidant defenses in human blood plasma and extra-cellular fluids. Arch Biochem Biophys, 595: 136–139

    Article  CAS  PubMed  Google Scholar 

  • Sudlow G, Birkett D J, Wade D N (1975). The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol, 11(6): 824–832

    CAS  PubMed  Google Scholar 

  • Zaidi N, Ajmal M R, Rabbani G, Ahmad E, Khan R H (2013). A comprehensive insight into binding of hippuric acid to human serum albumin: a study to uncover its impaired elimination through hemodialysis. PLoS One, 8(8): e71422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Golub L M, Johnson F, Wishnia A (2012). pKa, zinc- and serum albumin-binding of curcumin and two novel biologicallyactive chemically-modified curcumins. Curr Med Chem, 19(25): 4367–4375

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge UGC-DAE for providing fellowship to Turban Kar.We are also grateful to DST (FIST), World Bank-ICZMP (54-ICZMP/3P), UGC-CAS, UGC-UPE, and DBT-IPLS, Government of India for providing the instrumental facility in the Department of Biochemistry, Calcutta University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maitree Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, T., Basak, P., Sen, S. et al. Analysis of curcumin interaction with human serum albumin using spectroscopic studies with molecular simulation. Front. Biol. 12, 199–209 (2017). https://doi.org/10.1007/s11515-017-1449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1449-z

Keywords

Navigation