Skip to main content
Log in

Comparative analysis of metabolic network of pathogens

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Background

Metabolic networks are complex and system of highly connected chemical reactions and hence it needs a system level computational approach to identify the genotype- phenotype relationship. The study of essential genes and reactions and synthetic lethality of genes and reactions plays a crucial role in explaining functional links between genes and gene function predictions.

Methods

Flux balance analysis (FBA) has been developed as a powerful method for the in silico analyses of metabolic networks. In this study, we present the comparative analysis of the genomic scale metabolic networks of the four microorganisms i.e. Salmonella typhimurium, Mycobacterium tuberculosis, Staphylococcus aureus, and Helicobacter pylori. The fluxes of all reaction were obtained and the growth rate of the organism was calculated by setting the biomass reaction as the objective function.

Results & Conclusions

The average lethality fraction of all the four organisms studied ranged from 0.2 to 0.6. It was also observed that there are very few metabolites which are highly connected. Those metabolites that are highly connected are supposed to be the ‘global players’ similar to the hub protein in the protein–protein interaction network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Feist and Palsson (2008). The growing scope of applications of genomescale metabolic reconstructions using Escherichia coli. Nature Biotechnol, 226(6): 659–667

    Google Scholar 

  • Alper H, Jin Y S, Moxley J F, Stephanopoulos G (2005). Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng, 7(3): 155–164

    Article  CAS  PubMed  Google Scholar 

  • Plaimas K, Eils R, König R. Identifying essential genes in bacterial metabolic networks with machine learning methods. BMC systems biology. 2010 May 3;4(1):1

    Article  Google Scholar 

  • Chowdhury R, Chowdhury A, Maranas C D (2015). Using gene essentiality and synthetic lethality information to correct yeast and CHO cell genome-scale models. Metabolites, 5(4): 536–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker S A, Palsson B Ø (2005). Genome-scale reconstruction of the metabolic network in Staphylococcus aureus N315: an initial draft to the two-dimensional annotation. BMC Microbiol, 5(1): 8

    Article  PubMed  PubMed Central  Google Scholar 

  • Schilling C H, CovertMW, Famili I, Church G M, Edwards J S, Palsson B O (2002). Genome-scale metabolic model of Helicobacter pylori 26695. J Bacteriol, 184(16): 4582–4593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deutscher D, Meilijson I, Kupiec M, Ruppin E (2006). Multiple knockout analysis of genetic robustness in the yeast metabolic network. Nat Genet, 38(9): 993–998

    Article  CAS  PubMed  Google Scholar 

  • Edwards J S, Ramakrishna R, Palsson B O (2001). Characterizing the metabolic phenotype: a phenotype phase plane analysis. Biotechnol Bioeng, 77(1): 27–36

    Article  Google Scholar 

  • Hamilton J J, Reed J L (2012). Identification of functional differences in metabolic networks using comparative genomics and constraintbased models. PLoS One, 7(4): e34670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinemann M, Kummel A, Ruinatscha R, Panke S (2005). In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng, 92(7): 850–64

    Article  CAS  PubMed  Google Scholar 

  • Jamshidi N, Palsson B Ø (2007). Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol, 1(1): 26

    Article  PubMed  PubMed Central  Google Scholar 

  • Schellenberger J, Que R, Fleming R M, Thiele I, Orth J D, Feist A M, Zielinski D C, Bordbar A, Lewis N E, Rahmanian S, Kang J, Hyduke D R, Palsson B Ø (2011). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc, 6(9): 1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keating S M (2006). SBMLToolbox: an SBML toolbox for MATLAB users. Bioinformatics, 22(10): 1275–1277

    Article  CAS  PubMed  Google Scholar 

  • Masel J, Siegal ML (2010). Robustness: mechanisms and consequences. Trends Genet, 25(9): 395–403

    Article  Google Scholar 

  • Raman K, Chandra N (2009). Flux balance analysis of biological systems: applications and challenges. Brief Bioinform, 10(4): 435–449

    Article  CAS  PubMed  Google Scholar 

  • Kauffman K J, Prakash P, Edwards J S(2003). Advances in flux balance analysis. Curr Opin Biotechnol, 14(5): 491–496

    Article  CAS  PubMed  Google Scholar 

  • McClelland M, Sanderson K E, Spieth J, Clifton S W, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, Hou S, Layman D, Leonard S, Nguyen C, Scott K, Holmes A, Grewal N, Mulvaney E, Ryan E, Sun H, Florea L, Miller W, Stoneking T, Nhan M, Waterston R, Wilson R K (2001). Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature, 413(6858): 852–856

    Article  CAS  PubMed  Google Scholar 

  • Nijman S M B (2011). Synthetic lethality: general principles, utility and detection using genetic screens in human cells. FEBS Lett, 585(1): 1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratapa A, Balachandran S, Raman K (2015). Fast-SL: an efficient algorithm to identify synthetic lethal sets in metabolic networks. Bioinformatics, 31(20): 3299–3305

    Article  CAS  PubMed  Google Scholar 

  • Raghunathan A, Reed J, Shin S, Palsson B, Daefler S (2009). Constraintbased analysis of metabolic capacity of Salmonella typhimurium during host-pathogen interaction. BMC Syst Biol, 3(1): 38

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman K, Rajagopalan P, Chandra N (2005). Flux balance analysis of mycolic acid pathway: targets for anti-tubercular drugs. PLOS Comput Biol, 1(5): e46

    Article  PubMed  PubMed Central  Google Scholar 

  • Suthers P F, Zomorrodi A, Maranas C D (2009). Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol, 5: 301

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiele I, Hyduke D R, Steeb B, Fankam G, Allen D K, Bazzani S, Charusanti P, Chen F C, Fleming R M, Hsiung C A, De Keersmaecker S C, Liao Y C, Marchal K, Mo M L, Özdemir E, Raghunathan A, Reed J L, Shin S I, Sigurbjörnsdóttir S, Steinmann J, Sudarsan S, Swainston N, Thijs I M, Zengler K, Palsson B O, Adkins J N, Bumann D (2011). A community effort towards a knowledgebase and mathematical model of the human pathogen Salmonella Typhimurium LT2. BMC Syst Biol, 5: 8

    Article  PubMed  PubMed Central  Google Scholar 

  • Thiele I, Vo TD, Price ND, Palsson B Ø (2005). Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single- and double-deletion mutants. J Bacteriol, 187(16): 5818–5830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasha Hasija.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaurav, K., Hasija, Y. Comparative analysis of metabolic network of pathogens. Front. Biol. 12, 139–150 (2017). https://doi.org/10.1007/s11515-017-1440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-017-1440-8

Keywords

Navigation