Skip to main content
Log in

Neuronal activity controls the development of interneurons in the somatosensory cortex

  • Review
  • Published:
Frontiers in Biology

Abstract

BACKGROUND

Neuronal activity in cortical areas regulates neurodevelopment by interacting with defined genetic programs to shape the mature central nervous system. Electrical activity is conveyed to sensory cortical areas via intracortical and thalamocortical neurons, and includes oscillatory patterns that have been measured across cortical regions.

OBJECTIVE

In this work, we review the most recent findings about how electrical activity shapes the developmental assembly of functional circuitry in the somatosensory cortex, with an emphasis on interneuron maturation and integration. We include studies on the effect of various neurotransmitters and on the influence of thalamocortical afferent activity on circuit development. We additionally reviewed studies describing network activity patterns.

METHODS

We conducted an extensive literature search using both the PubMed and Google Scholar search engines. The following keywords were used in various iterations: “interneuron”, “somatosensory”, “development”, “activity”, “network patterns”, “thalamocortical”, “NMDA receptor”, “plasticity”. We additionally selected papers known to us from past reading, and those recommended to us by reviewers and members of our lab.

RESULTS

We reviewed a total of 132 articles that focused on the role of activity in interneuronal migration, maturation, and circuit development, as well as the source of electrical inputs and patterns of cortical activity in the somatosensory cortex. 79 of these papers included in this timely review were written between 2007 and 2016.

CONCLUSION

Neuronal activity shapes the developmental assembly of functional circuitry in the somatosensory cortical interneurons. This activity impacts nearly every aspect of development and acquisition of mature neuronal characteristics, and may contribute to changing phenotypes, altered transmitter expression, and plasticity in the adult. Progressively changing oscillatory network patterns contribute to this activity in the early postnatal period, although a direct requirement for specific patterns and origins of activity remains to be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelsberger H, Garaschuk O, Konnerth A (2005). Cortical calcium waves in resting newborn mice. Nat Neurosci, 8(8): 988–990

    Article  CAS  PubMed  Google Scholar 

  • Agmon A, Connors B W (1992). Correlation between intrinsic firing patterns and thalamocortical synaptic responses of neurons in mouse barrel cortex. J Neurosci, 12(1): 319–329

    CAS  PubMed  Google Scholar 

  • Agmon A, O’Dowd D K (1992). NMDA receptor-mediated currents are prominent in the thalamocortical synaptic response before maturation of inhibition. J Neurophysiol, 68(1): 345–349

    CAS  PubMed  Google Scholar 

  • Allène C, Cattani A, Ackman J B, Bonifazi P, Aniksztejn L, Ben-Ari Y, Cossart R (2008). Sequential generation of two distinct synapsedriven network patterns in developing neocortex. J Neurosci, 28(48): 12851–12863

    Article  PubMed  CAS  Google Scholar 

  • Allene C, Cossart R (2010). Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations? J Physiol, 588 (Pt 1): 83–91

  • An S, Kilb W, Luhmann H J (2014). Sensory-evoked and spontaneous gamma and spindle bursts in neonatal rat motor cortex. J Neurosci, 34(33): 10870–10883

    Article  PubMed  CAS  Google Scholar 

  • Anastasiades P G, Marques-Smith A, Lyngholm D, Lickiss T, Raffiq S, Kätzel D, Miesenböck G, Butt S J (2016). GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat Commun, 7: 10584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo D A, Feller M B (2016). Spatiotemporal Features of Retinal Waves Instruct the Wiring of the Visual Circuitry. Front Neural Circuits, 10: 54

    Article  PubMed  PubMed Central  Google Scholar 

  • Ascoli G A, Alonso-Nanclares L, Anderson S A, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Buzsáki G, Cauli B, Defelipe J, Fairén A, Feldmeyer D, Fishell G, Fregnac Y, Freund T F, Gardner D, Gardner E P, Goldberg J H, Helmstaedter M, Hestrin S, Karube F, Kisvárday Z F, Lambolez B, Lewis D A, Marin O, Markram H, Muñoz A, Packer A, Petersen C C, Rockland K S, Rossier J, Rudy B, Somogyi P, Staiger J F, Tamas G, Thomson A M, Toledo-Rodriguez M, Wang Y, West D C, Yuste R, Yuste R, and the Petilla Interneuron Nomenclature Group (2008). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci, 9(7): 557–568

    Article  CAS  PubMed  Google Scholar 

  • Avila A, Vidal P M, Dear T N, Harvey R J, Rigo J M, Nguyen L (2013). Glycine receptor a2 subunit activation promotes cortical interneuron migration. Cell Reports, 4(4): 738–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baho E, Di Cristo G (2012). Neural activity and neurotransmission regulate the maturation of the innervation field of cortical GABAergic interneurons in an age-dependent manner. J Neurosci, 32(3): 911–918

    Article  CAS  PubMed  Google Scholar 

  • Bando Y, Irie K, Shimomura T, Umeshima H, Kushida Y, Kengaku M, Fujiyoshi Y, Hirano T, Tagawa Y (2016). Control of spontaneous Ca2+ transients is critical for neuronal maturation in the developing neocortex. Cereb Cortex, 26(1): 106–117

    Article  PubMed  Google Scholar 

  • Batista-Brito R, Fishell G (2009). The developmental integration of cortical interneurons into a functional network. Curr Top Dev Biol, 87: 81–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Batista-Brito R, Machold R, Klein C, Fishell G (2008). Gene expression in cortical interneuron precursors is prescient of their mature function. Cereb Cortex, 18(10): 2306–2317

    Article  PubMed  PubMed Central  Google Scholar 

  • Behar T N, Schaffner A E, Scott C A, Greene C L, Barker J L (2000). GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex, 10(9): 899–909

    Article  CAS  PubMed  Google Scholar 

  • Behar T N, Scott C A, Greene C L, Wen X, Smith S V, Maric D, Liu Q Y, Colton C A, Barker J L (1999). Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J Neurosci, 19(11): 4449–4461

    CAS  PubMed  Google Scholar 

  • Bony G, Szczurkowska J, Tamagno I, Shelly M, Contestabile A, Cancedda L (2013). Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nat Commun, 4: 1800

    Article  PubMed  CAS  Google Scholar 

  • Bortone D, Polleux F (2009). KCC2 expression promotes the termination of cortical interneuron migration in a voltage-sensitive calcium-dependent manner. Neuron, 62(1): 53–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt S J, Fuccillo M, Nery S, Noctor S, Kriegstein A, Corbin J G, Fishell G (2005). The temporal and spatial origins of cortical interneurons predict their physiological subtype. Neuron, 48(4): 591–604

    Article  CAS  PubMed  Google Scholar 

  • Campanac E, Gasselin C, Baude A, Rama S, Ankri N, Debanne D (2013). Enhanced intrinsic excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits. Neuron, 77(4): 712–722

    Article  CAS  PubMed  Google Scholar 

  • Chaudhury S, Sharma V, Kumar V, Nag T C, Wadhwa S (2016). Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev, 38(4): 355–363

    Article  PubMed  Google Scholar 

  • Chu J, Anderson S A (2015). Development of cortical interneurons. Neuropsychopharmacology, 40(1): 16–23

    Article  PubMed  Google Scholar 

  • Close J, Xu H, De Marco García N, Batista-Brito R, Rossignol E, Rudy B, Fishell G (2012). Satb1 is an activity-modulated transcription factor required for the terminal differentiation and connectivity of medial ganglionic eminence-derived cortical interneurons. J Neurosci, 32(49): 17690–17705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen-Kashi Malina K, Mohar B, Rappaport A N, Lampl I (2016). Local and thalamic origins of correlated ongoing and sensory-evoked cortical activities. Nat Commun, 7: 12740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colonnese M T, Kaminska A, Minlebaev M, Milh M, Bloem B, Lescure S, Moriette G, Chiron C, Ben-Ari Y, Khazipov R (2010). A conserved switch in sensory processing prepares developing neocortex for vision. Neuron, 67(3): 480–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conhaim J, Easton C R, Becker M I, Barahimi M, Cedarbaum E R, Moore J G, Mather L F, Dabagh S, Minter D J, Moen S P, Moody W J (2011). Developmental changes in propagation patterns and transmitter dependence of waves of spontaneous activity in the mouse cerebral cortex. J Physiol, 589 (Pt 10): 2529–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corlew R, Bosma M M, Moody W J (2004). Spontaneous, synchronous electrical activity in neonatal mouse cortical neurones. J Physiol, 560 (Pt 2): 377–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cossart R, Ikegaya Y, Yuste R (2005). Calcium imaging of cortical networks dynamics. Cell Calcium, 37(5): 451–457

    Article  CAS  PubMed  Google Scholar 

  • Coulter D A (2001). Epilepsy-associated plasticity in gamma-aminobutyric acid receptor expression, function, and inhibitory synaptic properties. Int Rev Neurobiol, 45: 237–252

    Article  CAS  PubMed  Google Scholar 

  • Crair M C, Malenka R C (1995). A critical period for long-term potentiation at thalamocortical synapses. Nature, 375(6529): 325–328

    Article  CAS  PubMed  Google Scholar 

  • Cruikshank S J, Urabe H, Nurmikko A V, Connors B W (2010). Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron, 65(2): 230–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuzon V C, Yeh P W, Cheng Q, Yeh H H (2006). Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb Cortex, 16(10): 1377–1388

    Article  PubMed  Google Scholar 

  • Cuzon Carlson V C, Yeh H H (2011). GABAA receptor subunit profiles of tangentially migrating neurons derived from the medial ganglionic eminence. Cereb Cortex, 21(8): 1792–1802

    Article  PubMed  Google Scholar 

  • Daw M I, Scott H L, Isaac J T (2007). Developmental synaptic plasticity at the thalamocortical input to barrel cortex: mechanisms and roles. Mol Cell Neurosci, 34(4): 493–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lima A D, Gieseler A, Voigt T (2009). Relationship between GABAergic interneurons migration and early neocortical network activity. Dev Neurobiol, 69 (2-3): 105–123

    Article  PubMed  Google Scholar 

  • De Marco García N V, Karayannis T, Fishell G (2011). Neuronal activity is required for the development of specific cortical interneuron subtypes. Nature, 472(7343): 351–355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Marco García N V, Priya R, Tuncdemir S N, Fishell G, Karayannis T (2015). Sensory inputs control the integration of neurogliaform interneurons into cortical circuits. Nat Neurosci, 18(3): 393–401

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Diego I, Smith-Fernández A, Fairén A (1994). Cortical cells that migrate beyond area boundaries: characterization of an early neuronal population in the lower intermediate zone of prenatal rats. Eur J Neurosci, 6(6): 983–997

    Article  Google Scholar 

  • Dehorter N, Ciceri G, Bartolini G, Lim L, Del Pino I, Marín O (2015). Tuning of fast-spiking interneuron properties by an activitydependent transcriptional switch. Science, 349(6253): 1216–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denaxa M, Kalaitzidou M, Garefalaki A, Achimastou A, Lasrado R, Maes T, Pachnis V (2012). Maturation-promoting activity of SATB1 in MGE-derived cortical interneurons. Cell Reports, 2(5): 1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupont E, Hanganu I L, Kilb W, Hirsch S, Luhmann H J (2006). Rapid developmental switch in the mechanisms driving early cortical columnar networks. Nature, 439(7072): 79–83

    Article  CAS  PubMed  Google Scholar 

  • Easton C R, Weir K, Scott A, Moen S P, Barger Z, Folch A, Hevner R F, Moody W J (2014). Genetic elimination of GABAergic neurotransmission reveals two distinct pacemakers for spontaneous waves of activity in the developing mouse cortex. J Neurosci, 34(11): 3854–3863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erzurumlu R S, Gaspar P (2012). Development and critical period plasticity of the barrel cortex. Eur J Neurosci, 35(10): 1540–1553

    Article  PubMed  PubMed Central  Google Scholar 

  • Espinosa J S, Stryker M P (2012). Development and plasticity of the primary visual cortex. Neuron, 75(2): 230–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinosa J S, Wheeler D G, Tsien R W, Luo L (2009). Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron, 62(2): 205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feldmeyer D (2012). Excitatory neuronal connectivity in the barrel cortex. Front Neuroanat, 6: 24

    Article  PubMed  PubMed Central  Google Scholar 

  • Feldmeyer D, Brecht M, Helmchen F, Petersen C C, Poulet J F, Staiger J F, Luhmann H J, Schwarz C (2013). Barrel cortex function. Prog Neurobiol, 103: 3–27

    Article  PubMed  Google Scholar 

  • Fishell G, Rudy B (2011). Mechanisms of inhibition within the telencephalon: “where the wild things are”. Annu Rev Neurosci, 34(1): 535–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flint A C, Maisch U S, Weishaupt J H, Kriegstein A R, Monyer H (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. J Neurosci, 17(7): 2469–2476

    CAS  PubMed  Google Scholar 

  • Frazer S, Otomo K, Dayer A (2015). Early-life serotonin dysregulation affects the migration and positioning of cortical interneuron subtypes. Transl Psychiatry, 5 (9): e644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garaschuk O, Linn J, Eilers J, Konnerth A (2000). Large-scale oscillatory calcium waves in the immature cortex. Nat Neurosci, 3(5): 452–459

    Article  CAS  PubMed  Google Scholar 

  • Gierdalski M, Jablonska B, Siucinska E, Lech M, Skibinska A, Kossut M (2001). Rapid regulation of GAD67 mRNA and protein level in cortical neurons after sensory learning. Cereb Cortex, 11(9): 806–815

    Article  CAS  PubMed  Google Scholar 

  • Golshani P, Gonçalves J T, Khoshkhoo S, Mostany R, Smirnakis S, Portera-Cailliau C (2009). Internally mediated developmental desynchronization of neocortical network activity. J Neurosci, 29(35): 10890–10899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanganu I L, Kilb W, Luhmann H J (2002). Functional synaptic projections onto subplate neurons in neonatal rat somatosensory cortex. J Neurosci, 22(16): 7165–7176

    CAS  PubMed  Google Scholar 

  • Heck N, Kilb W, Reiprich P, Kubota H, Furukawa T, Fukuda A, Luhmann H J (2007). GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb Cortex, 17(1): 138–148

    Article  PubMed  Google Scholar 

  • Higashi S, Hioki K, Kurotani T, Kasim N, Molnár Z (2005). Functional thalamocortical synapse reorganization from subplate to layer IV during postnatal development in the reeler-like mutant rat (shaking rat Kawasaki). J Neurosci, 25(6): 1395–1406

    Article  CAS  PubMed  Google Scholar 

  • Huang Z J, Di Cristo G, Ango F (2007). Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci, 8(9): 673–686

    Article  CAS  PubMed  Google Scholar 

  • Inada H, Watanabe M, Uchida T, Ishibashi H, Wake H, Nemoto T, Yanagawa Y, Fukuda A, Nabekura J (2011). GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice. PLoS ONE, 6 (12): e27048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwasato T, Datwani A, Wolf A M, Nishiyama H, Taguchi Y, Tonegawa S, Knöpfel T, Erzurumlu R S, Itohara S (2000). Cortex-restricted disruption of NMDAR1 impairs neuronal patterns in the barrel cortex. Nature, 406(6797): 726–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji X Y, Zingg B, Mesik L, Xiao Z, Zhang L I, Tao H W (2016). Thalamocortical Innervation Pattern in Mouse Auditory and Visual Cortex: Laminar and Cell-Type Specificity. Cereb Cortex, 26(6): 2612–2625

    Article  PubMed  Google Scholar 

  • Jiao Y, Zhang C, Yanagawa Y, Sun Q Q (2006). Major effects of sensory experiences on the neocortical inhibitory circuits. J Neurosci, 26(34): 8691–8701

    Article  CAS  PubMed  Google Scholar 

  • Kanold P O (2004). Transient microcircuits formed by subplate neurons and their role in functional development of thalamocortical connections. Neuroreport, 15(14): 2149–2153

    Article  PubMed  Google Scholar 

  • Kanold P O, Kara P, Reid R C, Shatz C J (2003). Role of subplate neurons in functional maturation of visual cortical columns. Science, 301(5632): 521–525

    Article  CAS  PubMed  Google Scholar 

  • Kanold P O, Luhmann H J (2010). The subplate and early cortical circuits. Annu Rev Neurosci, 33(1): 23–48

    Article  CAS  PubMed  Google Scholar 

  • Karayannis T, De Marco García N V, Fishell G J (2012). Functional adaptation of cortical interneurons to attenuated activity is subtypespecific. Front Neural Circuits, 6: 66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karnani M M, Jackson J, Ayzenshtat I, Tucciarone J, Manoocheri K, Snider W G, Yuste R (2016). Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex. Neuron, 90(1): 86–100

    Article  CAS  PubMed  Google Scholar 

  • Kepecs A, Fishell G (2014). Interneuron cell types are fit to function. Nature, 505(7483): 318–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khazipov R, Luhmann H J (2006). Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci, 29(7): 414–418

    Article  CAS  PubMed  Google Scholar 

  • Khazipov R, Sirota A, Leinekugel X, Holmes G L, Ben-Ari Y, Buzsáki G (2004). Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature, 432(7018): 758–761

    Article  CAS  PubMed  Google Scholar 

  • Kihara M, Yoshioka H, Hirai K, Hasegawa K, Kizaki Z, Sawada T (2002). Stimulation of N-methyl-D-aspartate (NMDA) receptors inhibits neuronal migration in embryonic cerebral cortex: a tissue culture study. Brain Res Dev Brain Res, 138(2): 195–198

    Article  CAS  PubMed  Google Scholar 

  • Kilb W, Kirischuk S, Luhmann H J (2011). Electrical activity patterns and the functional maturation of the neocortex. Eur J Neurosci, 34(10): 1677–1686

    Article  PubMed  Google Scholar 

  • Kilb W, Kirischuk S, Luhmann H J (2013). Role of tonic GABAergic currents during pre- and early postnatal rodent development. Front Neural Circuits, 7: 139

    Article  PubMed  PubMed Central  Google Scholar 

  • Killackey H P (1973). Anatomical evidence for cortical subdivisions based on vertically discrete thalamic projections from the ventral posterior nucleus to cortical barrels in the rat. Brain Res, 51: 326–331

    Article  CAS  PubMed  Google Scholar 

  • Kirmse K, Kummer M, Kovalchuk Y, Witte O W, Garaschuk O, Holthoff K (2015). GABA depolarizes immature neurons and inhibits network activity in the neonatal neocortex in vivo. Nat Commun, 6: 7750

    Article  CAS  PubMed  Google Scholar 

  • Koolen N, Dereymaeker A, Räsänen O, Jansen K, Vervisch J, Matic V, Naulaers G, de Vos M, Van Huffel S, Vanhatalo S (2016). Early development of synchrony in cortical activations in the human. Neuroscience, 322: 298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kral A (2013). Auditory critical periods: a review from system’s perspective. Neuroscience, 247: 117–133

    Article  CAS  PubMed  Google Scholar 

  • Laaris N, Carlson G C, Keller A (2000). Thalamic-evoked synaptic interactions in barrel cortex revealed by optical imaging. J Neurosci, 20(4): 1529–1537

    CAS  PubMed  Google Scholar 

  • Lee L J, Iwasato T, Itohara S, Erzurumlu R S (2005). Exuberant thalamocortical axon arborization in cortex-specific NMDAR1 knockout mice. J Comp Neurol, 485(4): 280–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis D A (2014). Inhibitory neurons in human cortical circuits: substrate for cognitive dysfunction in schizophrenia. Curr Opin Neurobiol, 26: 22–26

    Article  CAS  PubMed  Google Scholar 

  • Li H, Fertuzinhos S, Mohns E, Hnasko T S, Verhage M, Edwards R, Sestan N, Crair M C (2013). Laminar and columnar development of barrel cortex relies on thalamocortical neurotransmission. Neuron, 79(5): 970–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang F, Isackson P J, Jones E G (1996). Stimulus-dependent, reciprocal up- and downregulation of glutamic acid decarboxylase and Ca2+/ calmodulin-dependent protein kinase II gene expression in rat cerebral cortex. Exp Brain Res, 110(2): 163–174

    Article  CAS  PubMed  Google Scholar 

  • Liodis P, Denaxa M, Grigoriou M, Akufo-Addo C, Yanagawa Y, Pachnis V (2007). Lhx6 activity is required for the normal migration and specification of cortical interneuron subtypes. J Neurosci, 27(12): 3078–3089

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P (2010). Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci, 30(12): 4197–4209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Hashimoto-Torii K, Torii M, Haydar T F, Rakic P (2008). The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci USA, 105(33): 11802–11807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X B, Murray K D, Jones E G (2004). Switching of NMDA receptor 2A and 2B subunits at thalamic and cortical synapses during early postnatal development. J Neurosci, 24(40): 8885–8895

    Article  CAS  PubMed  Google Scholar 

  • Lorente de No R (1922). La Corteza Cerebral del Raton (Primera Contribucion- La Corteza Acustica). Trabajos del Laboratorio de Investigaciones Biologicas, 20: 41–78

    Google Scholar 

  • Lo Turco J J, Blanton M G, Kriegstein A R (1991). Initial expression and endogenous activation of NMDA channels in early neocortical development. J Neurosci, 11(3): 792–799

    CAS  Google Scholar 

  • Luhmann H J, Fukuda A, Kilb W (2015). Control of cortical neuronal migration by glutamate and GABA. Front Cell Neurosci, 9: 4

    Article  PubMed  PubMed Central  Google Scholar 

  • Luhmann H J, Hanganu I, Kilb W (2003). Cellular physiology of the neonatal rat cerebral cortex. Brain Res Bull, 60(4): 345–353

    Article  CAS  PubMed  Google Scholar 

  • Luhmann H J, Kirischuk S, Sinning A, Kilb W (2014). Early GABAergic circuitry in the cerebral cortex. Curr Opin Neurobiol, 26: 72–78

    Article  CAS  PubMed  Google Scholar 

  • Manent J B, Jorquera I, Ben-Ari Y, Aniksztejn L, Represa A (2006). Glutamate acting on AMPA but not NMDA receptors modulates the migration of hippocampal interneurons. J Neurosci, 26(22): 5901–5909

    Article  CAS  PubMed  Google Scholar 

  • Marín O (2012). Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci, 13(2): 107–120

    PubMed  Google Scholar 

  • Marques-Smith A, Lyngholm D, Kaufmann A K, Stacey J A, Hoerder-Suabedissen A, Becker E B, Wilson M C, Molnár Z, Butt S J (2016). A Transient Translaminar GABAergic Interneuron Circuit Connects Thalamocortical Recipient Layers in Neonatal Somatosensory Cortex. Neuron, 89(3): 536–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matta J A, Pelkey K A, Craig M T, Chittajallu R, Jeffries B W, McBain C J (2013). Developmental origin dictates interneuron AMPA and NMDA receptor subunit composition and plasticity. Nat Neurosci, 16(8): 1032–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCabe A K, Chisholm S L, Picken-Bahrey H L, Moody W J (2006). The self-regulating nature of spontaneous synchronized activity in developing mouse cortical neurones. J Physiol, 577 (Pt 1): 155–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milh M, Kaminska A, Huon C, Lapillonne A, Ben-Ari Y, Khazipov R (2007). Rapid cortical oscillations and early motor activity in premature human neonate. Cereb Cortex, 17(7): 1582–1594

    Article  PubMed  Google Scholar 

  • Minlebaev M, Ben-Ari Y, Khazipov R (2007). Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo. J Neurophysiol, 97(1): 692–700

    Article  CAS  PubMed  Google Scholar 

  • Minlebaev M, Ben-Ari Y, Khazipov R (2009). NMDA receptors pattern early activity in the developing barrel cortex in vivo. Cereb Cortex, 19(3): 688–696

    Article  PubMed  Google Scholar 

  • Minlebaev M, Colonnese M, Tsintsadze T, Sirota A, Khazipov R (2011). Early g oscillations synchronize developing thalamus and cortex. Science, 334(6053): 226–229

    Article  CAS  PubMed  Google Scholar 

  • Mix A, Hoppenrath K, Funke K (2015). Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats. Dev Neurobiol, 75(1): 1–11

    Article  CAS  PubMed  Google Scholar 

  • Miyashita-Lin EM, Hevner R, Wassarman KM, Martinez S, Rubenstein J L (1999). Early neocortical regionalization in the absence of thalamic innervation. Science, 285(5429): 906–909

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi G, Butt S J, Takebayashi H, Fishell G (2007). Physiologically distinct temporal cohorts of cortical interneurons arise from telencephalic Olig2-expressing precursors. J Neurosci, 27(29): 7786–7798

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi G, Fishell G (2011). GABAergic interneuron lineages selectively sort into specific cortical layers during early postnatal development. Cereb Cortex, 21(4): 845–852

    Article  PubMed  Google Scholar 

  • Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa V H, Butt S J, Battiste J, Johnson J E, Machold R P, Fishell G (2010). Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci, 30(5): 1582–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizuno H, Luo W, Tarusawa E, Saito Y M, Sato T, Yoshimura Y, Itohara S, Iwasato T (2014). NMDAR-regulated dynamics of layer 4 neuronal dendrites during thalamocortical reorganization in neonates. Neuron, 82(2): 365–379

    Article  CAS  PubMed  Google Scholar 

  • Molnár Z, Adams R, Blakemore C (1998). Mechanisms underlying the early establishment of thalamocortical connections in the rat. J Neurosci, 18(15): 5723–5745

    PubMed  Google Scholar 

  • Murthy S, Niquille M, Hurni N, Limoni G, Frazer S, Chameau P, Van Hooft J A, Vitalis T, Dayer A (2014). Serotonin receptor 3A controls interneuron migration into the neocortex. Nat Commun, 5: 5524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narboux-Nême N, Evrard A, Ferezou I, Erzurumlu R S, Kaeser P S, Lainé J, Rossier J, Ropert N, Südhof T C, Gaspar P (2012). Neurotransmitter release at the thalamocortical synapse instructs barrel formation but not axon patterning in the somatosensory cortex. J Neurosci, 32(18): 6183–6196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oh W C, Lutzu S, Castillo P E, Kwon H B (2016). De novo synaptogenesis induced by GABA in the developing mouse cortex. Science, 353(6303): 1037–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okaty B W, Miller M N, Sugino K, Hempel C M, Nelson S B (2009). Transcriptional and electrophysiological maturation of neocortical fast-spiking GABAergic interneurons. J Neurosci, 29(21): 7040–7052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paoletti P, Bellone C, Zhou Q (2013). NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci, 14(6): 383–400

    Article  CAS  PubMed  Google Scholar 

  • Petersen C C (2007). The functional organization of the barrel cortex. Neuron, 56(2): 339–355

    Article  CAS  PubMed  Google Scholar 

  • Porter J T, Johnson C K, Agmon A (2001). Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci, 21(8): 2699–2710

    CAS  PubMed  Google Scholar 

  • Reiprich P, Kilb W, Luhmann H J (2005). Neonatal NMDA receptor blockade disturbs neuronal migration in rat somatosensory cortex in vivo. Cereb Cortex, 15(3): 349–358

    Article  PubMed  Google Scholar 

  • Rheims S, Minlebaev M, Ivanov A, Represa A, Khazipov R, Holmes G L, Ben-Ari Y, Zilberter Y (2008). Excitatory GABA in rodent developing neocortex in vitro. J Neurophysiol, 100(2): 609–619

    Article  PubMed  Google Scholar 

  • Riccio O, Potter G, Walzer C, Vallet P, Szabó G, Vutskits L, Kiss J Z, Dayer A G (2009). Excess of serotonin affects embryonic interneuron migration through activation of the serotonin receptor 6. Mol Psychiatry, 14(3): 280–290

    Article  CAS  PubMed  Google Scholar 

  • Rudy B, Fishell G, Lee S, Hjerling-Leffler J (2011). Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev Neurobiol, 71(1): 45–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutherford L C, De Wan A, Lauer H M, Turrigiano G G (1997). Brainderived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures. J Neurosci, 17(12): 4527–4535

    CAS  PubMed  Google Scholar 

  • Sanes D H, Kotak V C (2011). Developmental plasticity of auditory cortical inhibitory synapses. Hear Res, 279 (1-2): 140–148

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwartz T H, Rabinowitz D, Unni V, Kumar V S, Smetters D K, Tsiola A, Yuste R (1998). Networks of coactive neurons in developing layer 1. Neuron, 20(3): 541–552

    Article  CAS  PubMed  Google Scholar 

  • Siegel F, Heimel J A, Peters J, Lohmann C (2012). Peripheral and central inputs shape network dynamics in the developing visual cortex in vivo. Curr Biol, 22(3): 253–258

    Article  CAS  PubMed  Google Scholar 

  • Sippy T, Yuste R (2013). Decorrelating action of inhibition in neocortical networks. J Neurosci, 33(23): 9813–9830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soria J M, Valdeolmillos M (2002). Receptor-activated calcium signals in tangentially migrating cortical cells. Cereb Cortex, 12(8): 831–839

    Article  CAS  PubMed  Google Scholar 

  • Stosiek C, Garaschuk O, Holthoff K, Konnerth A (2003). In vivo twophoton calcium imaging of neuronal networks. Proc Natl Acad Sci USA, 100(12): 7319–7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sultan K T, Brown K N, Shi S H (2013). Production and organization of neocortical interneurons. Front Cell Neurosci, 7: 221

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J J, Luhmann H J (2007). Spatio-temporal dynamics of oscillatory network activity in the neonatal mouse cerebral cortex. Eur J Neurosci, 26(7): 1995–2004

    Article  PubMed  Google Scholar 

  • Sun Q Q, Huguenard J R, Prince D A (2006). Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci, 26(4): 1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Sur M, Leamey C A (2001). Development and plasticity of cortical areas and networks. Nat Rev Neurosci, 2(4): 251–262

    Article  CAS  PubMed  Google Scholar 

  • Takano T (2015). Interneuron dysfunction in syndromic autism: Recent advances. Dev Neurosci, 37(6): 467–475

    Article  CAS  PubMed  Google Scholar 

  • Tasic B, Menon V, Nguyen T N, Kim T K, Jarsky T, Yao Z, Levi B, Gray L T, Sorensen S A, Dolbeare T, Bertagnolli D, Goldy J, Shapovalova N, Parry S, Lee C, Smith K, Bernard A, Madisen L, Sunkin S M, Hawrylycz M, Koch C, Zeng H (2016). Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci, 19(2): 335–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolner E A, Sheikh A, Yukin A Y, Kaila K, Kanold P O (2012). Subplate neurons promote spindle bursts and thalamocortical patterning in the neonatal rat somatosensory cortex. J Neurosci, 32(2): 692–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolonen M, Palva J M, Andersson S, Vanhatalo S (2007). Development of the spontaneous activity transients and ongoing cortical activity in human preterm babies. Neuroscience, 145(3): 997–1006

    Article  CAS  PubMed  Google Scholar 

  • Trevelyan A J, Muldoon S F, Merricks E M, Racca C, Staley K J (2015). The role of inhibition in epileptic networks. J Clin Neurophysiol, 32(3): 227–234

    Article  PubMed  Google Scholar 

  • Tuncdemir S N, Wamsley B, Stam F J, Osakada F, Goulding M, Callaway E M, Rudy B, Fishell G (2016). Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron, 89(3): 521–535

    Article  CAS  PubMed  Google Scholar 

  • Uhlén P, Fritz N, Smedler E, Malmersjö S, Kanatani S (2015). Calcium signaling in neocortical development. Dev Neurobiol, 75(4): 360–368

    Article  PubMed  CAS  Google Scholar 

  • van der Loos H, Woolsey T A (1973). Somatosensory cortex: structural alterations following early injury to sense organs. Science, 179(4071): 395–398

    Article  PubMed  Google Scholar 

  • Van Eden C G, Mrzljak L, Voorn P, Uylings H B (1989). Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol, 289(2): 213–227

    Article  PubMed  Google Scholar 

  • Vitalis T, Ansorge M S, Dayer A G (2013). Serotonin homeostasis and serotonin receptors as actors of cortical construction: special attention to the 5-HT3A and 5-HT6 receptor subtypes. Front Cell Neurosci, 7: 93

    Article  PubMed  PubMed Central  Google Scholar 

  • Vitalis T, Cases O, Passemard S, Callebert J, Parnavelas J G (2007). Embryonic depletion of serotonin affects cortical development. Eur J Neurosci, 26(2): 331–344

    Article  PubMed  Google Scholar 

  • Voigt T, Opitz T, de Lima A D (2001). Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons. J Neurosci, 21(22): 8895–8905

    CAS  PubMed  Google Scholar 

  • Welker C (1971). Microelectrode delineation of fine grain somatotopic organization of (SmI) cerebral neocortex in albino rat. Brain Res, 26(2): 259–275

    CAS  PubMed  Google Scholar 

  • Welker C (1976). Receptive fields of barrels in the somatosensory neocortex of the rat. J Comp Neurol, 166(2): 173–189

    Article  CAS  PubMed  Google Scholar 

  • White L E, Fitzpatrick D (2007). Vision and cortical map development. Neuron, 56(2): 327–338

    Article  CAS  PubMed  Google Scholar 

  • Wichterle H, Garcia-Verdugo J M, Herrera D G, Alvarez-Buylla A (1999). Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci, 2(5): 461–466

    Article  CAS  PubMed  Google Scholar 

  • Wichterle H, Turnbull D H, Nery S, Fishell G, Alvarez-Buylla A (2001). In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development, 128(19): 3759–3771

    CAS  PubMed  Google Scholar 

  • Woolsey T A, van der Loos H (1970). The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res, 17(2): 205–242

    CAS  PubMed  Google Scholar 

  • Wu X, Fu Y, Knott G, Lu J, Di Cristo G, Huang Z J (2012). GABA signaling promotes synapse elimination and axon pruning in developing cortical inhibitory interneurons. J Neurosci, 32(1): 331–343

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang J W, Hanganu-Opatz I L, Sun J J, Luhmann H J (2009). Three patterns of oscillatory activity differentially synchronize developing neocortical networks in vivo. J Neurosci, 29(28): 9011–9025

    Article  CAS  PubMed  Google Scholar 

  • Yang JW, Reyes-Puerta V, Kilb W, Luhmann H J (2016). Spindle Bursts in Neonatal Rat Cerebral Cortex. Neural Plast, 2016: 3467832

    PubMed  PubMed Central  Google Scholar 

  • Yozu M, Tabata H, Konig N, Nakajima K (2008). Migratory behavior of presumptive interneurons is affected by AMPA receptor activation in slice cultures of embryonic mouse neocortex. Dev Neurosci, 30 (1-3): 105–116

    Article  CAS  PubMed  Google Scholar 

  • Zeisel A, Muñoz-Manchado A B, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, Marques S, Munguba H, He L, Betsholtz C, Rolny C, Castelo-Branco G, Hjerling-Leffler J, Linnarsson S (2015). Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science, 347(6226): 1138–1142

    CAS  PubMed  Google Scholar 

  • Zhang Z, Sun Q Q (2011). Development of NMDA NR2 subunits and their roles in critical period maturation of neocortical GABAergic interneurons. Dev Neurobiol, 71(3): 221–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to A. Che, P. Chu, and S. Z. Duan for comments on the manuscript. N.V.D.M.G. is supported by grants from the National Institutes of Health (5 R00 MH095825 05; 1 R01 MH110553 01), the Leon Levy Foundation, and Citizens United for Research in Epilepsy (CURE). R.B. is supported by a Medical Scientist Training Program grant from the National Institute of General Medical Sciences of the NIH under award number T32GM07739 to the Weill Cornell/Rockefeller/ Sloan-Kettering Tri-Institutional MD-PhD Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia De Marco Garcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babij, R., De Marco Garcia, N. Neuronal activity controls the development of interneurons in the somatosensory cortex. Front. Biol. 11, 459–470 (2016). https://doi.org/10.1007/s11515-016-1427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1427-x

Keywords

Navigation