Skip to main content
Log in

Choroid plexus trophic factors in the developing and adult brain

  • Review
  • Published:
Frontiers in Biology

Abstract

The choroid plexus (CP), localized in brain ventricles, is the major source of cerebrospinal fluid (CSF) and participates in the blood-CSF barrier. It is essential for brain immunosurveillance and the clearance of toxics, and for brain development and activity. Indeed, the CP secretes a large variety of trophic factors in the CSF that impact the entire brain. These factors are mainly implicated in neurogenesis, but also in the maintenance of brain functions and the vasculature. In this mini-review, we provide an overview of the various trophic factors secreted by the CP in the CSF, and describe their roles in the developing, adult and diseased brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alshehri B, D’Souza D G, Lee J Y, Petratos S, Richardson S J (2015). The diversity of mechanisms influenced by transthyretin in neurobiology: development, disease and endocrine disruption. J Neuroendocrinol, 27(5): 303–323

    Article  CAS  PubMed  Google Scholar 

  • Ashpole N M, Sanders J E, Hodges E L, Yan H, Sonntag WE (2015). Growth hormone, insulin-like growth factor-1 and the aging brain. Exp Gerontol, 68: 76–81

    Article  CAS  PubMed  Google Scholar 

  • Aurbach E L, Inui E G, Turner C A, Hagenauer M H, Prater K E, Li J Z, Absher D, Shah N, Blandino P, Bunney W E, Myers R M, Barchas J D, Schatzberg A F, Watson S J, Akil H (2015). Fibroblast growth factor 9 is a novel modulator of negative affect. Proc Natl Acad Sci USA, 112(38): 11953–11958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, Berkutzki T, Barnett-Itzhaki Z, Bezalel D, Wyss-Coray T, Amit I, Schwartz M (2014). Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science, 346(6205): 89–93

    CAS  PubMed  Google Scholar 

  • Ben-Hur T, Ben-Menachem O, Furer V, Einstein O, Mizrachi-Kol R, Grigoriadis N (2003). Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol Cell Neurosci, 24(3): 623–631

    Article  CAS  PubMed  Google Scholar 

  • Binder D K, Scharfman H E (2004). Brain-derived neurotrophic factor. Growth Factors, 22(3): 123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinker T, Stopa E, Morrison J, Klinge P (2014). A new look at cerebrospinal fluid circulation. Fluids Barriers CNS, 11 (1): 10

    Article  PubMed  PubMed Central  Google Scholar 

  • Budni J, Bellettini-Santos T, Mina F, Garcez M L, Zugno A I (2015). The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis, 6(5): 331–341

    Article  PubMed  PubMed Central  Google Scholar 

  • Carro E, Trejo J L, Spuch C, Bohl D, Heard J M, Torres-Aleman I (2006). Blockade of the insulin-like growth factor I receptor in the choroid plexus originates Alzheimer’s-like neuropathology in rodents: new cues into the human disease? Neurobiol Aging, 27 (11): 1618–1631

    Article  CAS  PubMed  Google Scholar 

  • Chen C P C, Chen R L, Preston J E (2012). The influence of ageing in the cerebrospinal fluid concentrations of proteins that are derived from the choroid plexus, brain, and plasma. Exp Gerontol, 47(4): 323–328

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Black I B, Di Cicco-Bloom E (2002). Hippocampal granule neuron production and population size are regulated by levels of bFGF. Eur J Neurosci, 15(1): 3–12

    Article  PubMed  Google Scholar 

  • Chodobski A, Szmydynger-Chodobska J (2001). Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech, 52(1): 65–82

    Article  CAS  PubMed  Google Scholar 

  • Craig C G, Tropepe V, Morshead C M, Reynolds B A, Weiss S, van der Kooy D (1996). In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. J Neurosci, 16(8): 2649–2658

    CAS  PubMed  Google Scholar 

  • Damkier H H, Brown P D, Praetorius J (2013). Cerebrospinal fluid secretion by the choroid plexus. Physiol Rev, 93(4): 1847–1892

    Article  CAS  PubMed  Google Scholar 

  • Das K P, Chao S L, White L D, Haines W T, Harry G J, Tilson H A, Barone S (2001). Differential patterns of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 mRNA and protein levels in developing regions of rat brain. Neuroscience, 103 (3): 739–761

    Article  CAS  PubMed  Google Scholar 

  • Delgado A C, Ferrón S R, Vicente D, Porlan E, Perez-Villalba A, Trujillo C M, D’Ocón P, Fariñas I (2014). Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron, 83(3): 572–585

    Article  CAS  PubMed  Google Scholar 

  • Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J M, Alvarez-Buylla A (2002). EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron, 36(6): 1021–1034

    Article  CAS  PubMed  Google Scholar 

  • Dziegielewska K M, Ek J, Habgood M D, Saunders N R (2001). Development of the choroid plexus. Microsc Res Tech, 52(1): 5–20

    Article  CAS  PubMed  Google Scholar 

  • Emerich D F, Skinner S J M, Borlongan C V, Vasconcellos A V, Thanos C G (2005). The choroid plexus in the rise, fall and repair of the brain. BioEssays, 27(3): 262–274

    Article  CAS  PubMed  Google Scholar 

  • Emerich D F, Vasconcellos AV, Elliott R B, Skinner S J, Borlongan C V (2004). The choroid plexus: function, pathology and therapeutic potential of its transplantation. Expert Opin Biol Ther, 4(8): 1191–1201

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt B, Wolburg-Buchholz K, Wolburg H (2001). Involvement of the choroid plexus in central nervous system inflammation. Microsc Res Tech, 52(1): 112–129

    Article  CAS  PubMed  Google Scholar 

  • Falcão A M, Marques F, Novais A, Sousa N, Palha J A, Sousa J C (2012). The path from the choroid plexus to the subventricular zone: go with the flow! Front Cell Neurosci, 6: 34

    Article  PubMed  PubMed Central  Google Scholar 

  • Falk S, Wurdak H, Ittner L M, Ille F, Sumara G, Schmid M T, Draganova K, Lang K S, Paratore C, Leveen P, Suter U, Karlßson S, Born W, Ricci R, Götz M, Sommer L (2008). Brain area-specific effect of TGF-ß signaling on Wnt-dependent neural stem cell expansion. Cell Stem Cell, 2(5): 472–483

    Article  CAS  PubMed  Google Scholar 

  • Forlenza O V, Diniz B S, Teixeira A L, Radanovic M, Talib L L, Rocha N P, Gattaz W F (2015). Lower cerebrospinal fluid concentration of brain-derived neurotrophic factor predicts progression from mild cognitive impairment to Alzheimer’s disease. Neuromolecular Med, 17(3): 326–332

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Zhou S, Cai H, Gong Z, Zang D (2014). VEGF levels in CSF and serum in mild ALS patients. J Neurol Sci, 346(1-2): 216–220

    Article  CAS  PubMed  Google Scholar 

  • Gato A, Alonso MI, Martín C, Carnicero E, Moro J A, De la Mano A, Fernández J M, Lamus F, Desmond M E. Embryonic cerebrospinal fluid in brain development: neural progenitor control. Croat Med J, 55(4): 299–305

  • Gong Z, Gao L, Guo J, Lu Y, Zang D (2015). bFGF in the CSF and serum of sALS patients. Acta Neurol Scand, 132(3): 171–178

    Article  CAS  PubMed  Google Scholar 

  • González-Marrero I, Giménez-Llort L, Johanson C E, Carmona-Calero EM, Castañeyra-Ruiz L, Brito-Armas JM, Castañeyra-Perdomo A, Castro-Fuentes R (2015). Choroid plexus dysfunction impairs betaamyloid clearance in a triple transgenic mouse model of Alzheimer’s disease. Front Cell Neurosci, 9: 17

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenwood S, Swetloff A, Wade A M, Terasaki T, Ferretti P (2008). Fgf2 is expressed in human and murine embryonic choroid plexus and affects choroid plexus epithelial cell behaviour. Cerebrospinal Fluid Res, 5 (1): 20

    Article  PubMed  PubMed Central  Google Scholar 

  • Hébert J M, Mishina Y, McConnell S K (2002). BMP signaling is required locally to pattern the dorsal telencephalic midline. Neuron, 35(6): 1029–1041

    Article  PubMed  Google Scholar 

  • Huang S L, Shi W, Jiao Q, He X J (2011). Change of neural stem cells in the choroid plexuses of developing rat. Int J Neurosci, 121(6): 310–315

    Article  PubMed  Google Scholar 

  • Huang X, Ketova T, Fleming J T, Wang H, Dey S K, Litingtung Y, Chiang C (2009). Sonic hedgehog signaling regulates a novel epithelial progenitor domain of the hindbrain choroid plexus. Development, 136(15): 2535–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iliff J J, Wang M, Liao Y, Plogg B A, Peng W, Gundersen G A, Benveniste H, Vates G E, Deane R, Goldman S A, Nagelhus E A, Nedergaard M (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid ß. Sci Transl Med, 4 (147): 147ra111

    Article  Google Scholar 

  • Itokazu Y, Kitada M, Dezawa M, Mizoguchi A, Matsumoto N, Shimizu A, Ide C (2006). Choroid plexus ependymal cells host neural progenitor cells in the rat. Glia, 53(1): 32–42

    Article  PubMed  Google Scholar 

  • Jackson E L, Garcia-Verdugo J M, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A (2006). PDGFR a- positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron, 51(2): 187–199

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Sun Y, Xie L, Batteur S, Mao X O, Smelick C, Logvinova A, Greenberg D A (2003). Neurogenesis and aging: FGF-2 and HBEGF restore neurogenesis in hippocampus and subventricular zone of aged mice. Aging Cell, 2(3): 175–183

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Zhu Y, Sun Y, Mao X O, Xie L, Greenberg D A (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA, 99(18): 11946–11950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson C, McMillan P, Tavares R, Spangenberger A, Duncan J, Silverberg G, Stopa E (2004). Homeostatic capabilities of the choroid plexus epithelium in Alzheimer’s disease. Cerebrospinal Fluid Res, 1 (1): 3

    Article  PubMed  PubMed Central  Google Scholar 

  • Johanson C, Stopa E, Baird A, Sharma H (2011a). Traumatic brain injury and recovery mechanisms: peptide modulation of periventricular neurogenic regions by the choroid plexus-CSF nexus. J Neural Transm (Vienna), 118(1): 115–133

    Article  CAS  Google Scholar 

  • Johanson C, Stopa E, McMillan P, Roth D, Funk J, Krinke G (2011b). The distributional nexus of choroid plexus to cerebrospinal fluid, ependyma and brain: toxicologic/pathologic phenomena, periventricular destabilization, and lesion spread. Toxicol Pathol, 39(1): 186–212

    Article  PubMed  Google Scholar 

  • Johansson P A (2014). The choroid plexuses and their impact on developmental neurogenesis. Front Neurosci, 8: 340

    Article  PubMed  PubMed Central  Google Scholar 

  • Krizhanovsky V, Ben-Arie N (2006). A novel role for the choroid plexus in BMP-mediated inhibition of differentiation of cerebellar neural progenitors. Mech Dev, 123(1): 67–75

    Article  CAS  PubMed  Google Scholar 

  • Krzyzanowska A, Carro E (2012). Pathological alteration in the choroid plexus of Alzheimer’s disease: implication for new therapy approaches. Front Pharmacol, 3: 75

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunis G, Baruch K, Rosenzweig N, Kertser A, Miller O, Berkutzki T, Schwartz M (2013). IFN-g-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain, 136 (Pt 11): 3427–3440

    Article  PubMed  Google Scholar 

  • Lehtinen MK, Zappaterra MW, Chen X, Yang Y J, Hill A D, Lun M, Maynard T, Gonzalez D, Kim S, Ye P, D’Ercole A J, Wong E T, La Mantia A S, Walsh C A (2011). The cerebrospinal fluid provides a proliferative niche for neural progenitor cells. Neuron, 69(5): 893–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Chen J, Chopp M (2002). Cell proliferation and differentiation from ependymal, subependymal and choroid plexus cells in response to stroke in rats. J Neurol Sci, 193(2): 137–146

    Article  PubMed  Google Scholar 

  • Licht T, Eavri R, Goshen I, Shlomai Y, Mizrahi A, Keshet E (2010). VEGF is required for dendritogenesis of newly born olfactory bulb interneurons. Development, 137(2): 261–271

    Article  CAS  PubMed  Google Scholar 

  • Liddelow S A (2015). Development of the choroid plexus and blood- CSF barrier. Front Neurosci, 9: 32

    Article  PubMed  PubMed Central  Google Scholar 

  • Lun M P, Monuki E S, Lehtinen M K (2015). Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci, 16(8): 445–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie F, Ruhrberg C (2012). Diverse roles for VEGF-A in the nervous system. Development, 139(8): 1371–1380

    Article  CAS  PubMed  Google Scholar 

  • Maharaj A S R, Walshe T E, Saint-Geniez M, Venkatesha S, Maldonado A E, Himes N C, Matharu K S, Karumanchi S A, D’Amore P A (2008). VEGF and TGF-ß are required for the maintenance of the choroid plexus and ependyma. J Exp Med, 205 (2): 491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisonpierre P C, Belluscio L, Friedman B, Alderson R F, Wiegand S J, Furth ME, Lindsay RM, Yancopoulos G D (1990). NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron, 5(4): 501–509

    Article  CAS  PubMed  Google Scholar 

  • Marques F, Sousa J C, Coppola G, Gao F, Puga R, Brentani H, Geschwind D H, Sousa N, Correia-Neves M, Palha J A (2011). Transcriptome signature of the adult mouse choroid plexus. Fluids Barriers CNS, 8 (1): 10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mashayekhi F, Azari M, Moghadam L M, Yazdankhah M, Naji M, Salehi Z (2009). Changes in cerebrospinal fluid nerve growth factor levels during chick embryonic development. J Clin Neurosci, 16 (10): 1334–1337

    Article  CAS  PubMed  Google Scholar 

  • Mashayekhi F, Sadeghi M, Rajaei F (2011). Induction of perlecan expression and neural cell proliferation by FGF-2 in the developing cerebral cortex: an in vivo study. J Mol Neurosci, 45(2): 87–93

    Article  CAS  PubMed  Google Scholar 

  • McCoy MK, Tansey MG (2008). TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation, 5 (1): 45

    Article  PubMed  PubMed Central  Google Scholar 

  • Meeker R B, Williams K, Killebrew D A, Hudson L C (2012). Cell trafficking through the choroid plexus. Cell Adhes Migr, 6(5): 390–396

    Article  Google Scholar 

  • Mesquita S D, Ferreira A C, Gao F, Coppola G, Geschwind D H, Sousa J C, Correia-Neves M, Sousa N, Palha J A, Marques F (2015). The choroid plexus transcriptome reveals changes in type I and II interferon responses in a mouse model of Alzheimer’s disease. Brain Behav Immun, 49: 280–292

    Article  CAS  PubMed  Google Scholar 

  • Miyan J A, Nabiyouni M, Zendah M(2003). Development of the brain: a vital role for cerebrospinal fluid. Can J Physiol Pharmacol, 81(4): 317–328

    Article  CAS  PubMed  Google Scholar 

  • Moore L, Bain J M, Loh J M, Levison S W (2014). PDGF-responsive progenitors persist in the subventricular zone across the lifespan. ASN Neuro, 6(2): 65–81

    Article  Google Scholar 

  • Nielsen C M, Dymecki S M (2010). Sonic hedgehog is required for vascular outgrowth in the hindbrain choroid plexus. Dev Biol, 340 (2): 430–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson C, Hultberg B M, Gammeltoft S (1996). Autocrine role of insulin-like growth factor II secretion by the rat choroid plexus. Eur J Neurosci, 8(3): 629–635

    Article  CAS  PubMed  Google Scholar 

  • Pencea V, Bingaman K D, Freedman L J, Luskin M B (2001). Neurogenesis in the subventricular zone and rostral migratory stream of the neonatal and adult primate forebrain. Exp Neurol, 172(1): 1–16

    Article  CAS  PubMed  Google Scholar 

  • Pillai A, Kale A, Joshi S, Naphade N, Raju M S V K, Nasrallah H, Mahadik S P (2010). Decreased BDNF levels in CSF of drug-naive first-episode psychotic subjects: correlation with plasma BDNF and psychopathology. Int J Neuropsychopharmacol, 13(4): 535–539

    Article  CAS  PubMed  Google Scholar 

  • Prasongchean W, Vernay B, Asgarian Z, Jannatul N, Ferretti P (2015). The neural milieu of the developing choroid plexus: neural stem cells, neurons and innervation. Front Neurosci, 9: 103

    Article  PubMed  PubMed Central  Google Scholar 

  • Preston J E (2001). Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech, 52(1): 31–37

    Article  CAS  PubMed  Google Scholar 

  • Rabie M A, Mohsen M, Ibrahim M, El-Sawy Mahmoud R (2014). Serum level of brain derived neurotrophic factor (BDNF) among patients with bipolar disorder. J Affect Disord, 162: 67–72

    Article  CAS  PubMed  Google Scholar 

  • Redzic Z B, Preston J E, Duncan J A, Chodobski A, Szmydynger- Chodobska J (2005). “The Choroid Plexus-Cerebrospinal Fluid System: From Development to Aging, ” in Current Topics in Developmental Biology, ed. Gerald P. Schatten (Academic Press), 1–52. Available at: http://www.sciencedirect.com/science/article/pii/ S0070215305710012 [Accessed November 15, 2013].

    Google Scholar 

  • Redzic Z B, Segal M B (2004). The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev, 56(12): 1695–1716

    Article  CAS  PubMed  Google Scholar 

  • Ruiz de Almodovar C, Coulon C, Salin P A, Knevels E, Chounlamountri N, Poesen K, Hermans K, Lambrechts D, van Geyte K, Dhondt J, Dresselaers T, Renaud J, Aragones J, Zacchigna S, Geudens I, Gall D, Stroobants S, Mutin M, Dassonville K, Storkebaum E, Jordan B F, Eriksson U, Moons L, D’Hooge R, Haigh J J, Belin M F, Schiffmann S, van Hecke P, Gallez B, Vinckier S, Chédotal A, Honnorat J, Thomasset N, Carmeliet P, Meissirel C (2010). Matrix-binding vascular endothelial growth factor (VEGF) isoforms guide granule cell migration in the cerebellum via VEGF receptor Flk1. J Neurosci, 30(45): 15052–15066

    Article  Google Scholar 

  • Salehi Z, Mashayekhi F, Naji M, Pandamooz S (2009). Insulin-like growth factor-1 and insulin-like growth factor binding proteins in cerebrospinal fluid during the development of mouse embryos. J Clin Neurosci, 16(7): 950–953

    Article  CAS  PubMed  Google Scholar 

  • Sathyanesan M, Girgenti M J, Banasr M, Stone K, Bruce C, Guilchicek E, Wilczak-Havill K, Nairn A, Williams K, Sass S, Duman J G, Newton S S (2012). A molecular characterization of the choroid plexus and stress-induced gene regulation. Transl Psychiatry, 2 (7): e139

    Article  Google Scholar 

  • Saunders N R, Daneman R, Dziegielewska K M, Liddelow S A (2013). Transporters of the blood-brain and blood-CSF interfaces in development and in the adult. Mol Aspects Med, 34(2-3): 742–752

    Article  CAS  PubMed  Google Scholar 

  • Schänzer A, Wachs F P, Wilhelm D, Acker T, Cooper-Kuhn C, Beck H, Winkler J, Aigner L, Plate K H, Kuhn H G (2004). Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol, 14(3): 237–248

    Article  PubMed  Google Scholar 

  • Scola G, Andreazza A C (2015). The role of neurotrophins in bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry, 56: 122–128

    Article  CAS  PubMed  Google Scholar 

  • Segklia A, Seuntjens E, Elkouris M, Tsalavos S, Stappers E, Mitsiadis T A, Huylebroeck D, Remboutsika E, Graf D (2012). Bmp7 regulates the survival, proliferation, and neurogenic properties of neural progenitor cells during corticogenesis in the mouse. PLoS ONE, 7 (3): e34088

    Article  Google Scholar 

  • Serot J M, Béné M C, Foliguet B, Faure G C (1997). Altered choroid plexus basement membrane and epithelium in late-onset Alzheimer’s disease: an ultrastructural study. Ann N Y Acad Sci, 826(1 Cerebrovascul): 507–509

    Article  CAS  PubMed  Google Scholar 

  • Serot J M, Foliguet B, Béné M C, Faure G C (2001). Choroid plexus and ageing in rats: a morphometric and ultrastructural study. Eur J Neurosci, 14(5): 794–798

    Article  CAS  PubMed  Google Scholar 

  • Spatazza J, Lee H H C, Di Nardo A A, Tibaldi L, Joliot A, Hensch T K, Prochiantz A (2013). Choroid-plexus-derived Otx2 homeoprotein constrains adult cortical plasticity. Cell Reports, 3(6): 1815–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spector R, Johanson C E (2010). Vectorial ligand transport through mammalian choroid plexus. Pharm Res, 27(10): 2054–2062

    Article  CAS  PubMed  Google Scholar 

  • Spector R, Keep R F, Robert Snodgrass S, Smith Q R, Johanson C E (2015a). A balanced view of choroid plexus structure and function: Focus on adult humans. Exp Neurol, 267: 78–86

    Article  PubMed  Google Scholar 

  • Spector R, Robert Snodgrass S, Johanson C E (2015b). A balanced view of the cerebrospinal fluid composition and functions: Focus on adult humans. Exp Neurol, 273: 57–68

    Article  CAS  PubMed  Google Scholar 

  • Stolp H B, Molnár Z (2015). Neurogenic niches in the brain: help and hindrance of the barrier systems. Front Neurosci, 9: 20

    Article  PubMed  PubMed Central  Google Scholar 

  • Storkebaum E, Carmeliet P (2004). VEGF: a critical player in neurodegeneration. J Clin Invest, 113(1): 14–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strazielle N, Mutin M, Ghersi-Egea J F (2005). Les plexus choroïdes: une interface dynamique entre sang et liquide cephalo-rachidien. Morphologie, 89(285): 90–101

    Article  CAS  PubMed  Google Scholar 

  • Strelau J, Sullivan A, Böttner M, Lingor P, Falkenstein E, Suter-Crazzolara C, Galter D, Jaszai J, Krieglstein K, Unsicker K (2000). Growth/differentiation factor-15/macrophage inhibitory cytokine-1 is a novel trophic factor for midbrain dopaminergic neurons in vivo. J Neurosci, 20(23): 8597–8603

    CAS  PubMed  Google Scholar 

  • Tochitani S, Kondo S (2013). Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the meninges and the choroid plexus: implications for non-neuronal sources for GABA in the developing mouse brain. PLoS ONE, 8 (2): e56901

    Article  Google Scholar 

  • Turner C A, Thompson R C, Bunney WE, Schatzberg A F, Barchas J D, Myers R M, Akil H, Watson S J (2014). Altered choroid plexus gene expression in major depressive disorder. Front Hum Neurosci, 8: 238

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaccarino F M, Schwartz M L, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin J D, Wyland J J, Hung Y T (1999). Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat Neurosci, 2(3): 246–253

    Article  CAS  PubMed  Google Scholar 

  • Wagner J P, Black I B, Di Cicco-Bloom E (1999). Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci, 19(14): 6006–6016

    CAS  PubMed  Google Scholar 

  • Watanabe M, Kang Y J, Davies L M, Meghpara S, Lau K, Chung C Y, Kathiriya J, Hadjantonakis A K, Monuki E S (2012). BMP4 sufficiency to induce choroid plexus epithelial fate from embryonic stem cell-derived neuroepithelial progenitors. J Neurosci, 32(45): 15934–15945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner H, Le Roith D (2014). Insulin and insulin-like growth factor receptors in the brain: physiological and pathological aspects. Eur Neuropsychopharmacol, 24(12): 1947–1953

    Article  CAS  PubMed  Google Scholar 

  • Xia Y X, Ikeda T, Xia X Y, Ikenoue T (2000). Differential neurotrophin levels in cerebrospinal fluid and their changes during development in newborn rat. Neurosci Lett, 280(3): 220–222

    Article  CAS  PubMed  Google Scholar 

  • Zappaterra M W, Lehtinen M K (2012). The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond. Cell Mol Life Sci, 69(17): 2863–2878

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A N, Levison SW, Wood T L (2015). Insulin and IGF receptor signalling in neural-stem-cell homeostasis. Nat Rev Endocrinol, 11 (3): 161–170

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A N, Schneider J S, Qin M, Tyler WA, Pintar J E, Fraidenraich D, Wood T L, Levison S W (2012). IGF-II promotes stemness of neural restricted precursors. Stem Cells, 30(6): 1265–1276

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel A. Di Nardo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnaud, K., Di Nardo, A.A. Choroid plexus trophic factors in the developing and adult brain. Front. Biol. 11, 214–221 (2016). https://doi.org/10.1007/s11515-016-1401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1401-7

Keywords

Navigation