Skip to main content
Log in

Selective binding of divalent cations toward heme proteins

  • Research Article
  • Published:
Frontiers in Biology

Abstract

Potential toxicity of transition metals like Hg, Cu and Cd are well known and their affinity toward proteins is of great concern. This work explores the selective nature of interactions of Cu2+, Hg2+ and Cd2+ with the heme proteins leghemoglobin, myoglobin and cytochrome C. The binding profiles were analyzed using absorbance spectrum and steady-state fluorescence spectroscopy. Thermodynamic parameters like enthalpy, entropy and free energy changes were derived by isothermal calorimetry and consequent binding parameters were compared for these heme proteins. Free energy (DG) values revealed Cu2+ binding toward myoglobin and leghemoglobin to be specific and facile in contrast to weak binding for Hg2+ or Cd2+. Time correlated single photon counting indicated significant alteration in excited state lifetimes for metal complexed myoglobin and leghemoglobin suggesting bimolecular collisions to be involved. Interestingly, none of these cations showed significant affinity for cytochrome c pointing that, presence of conserved sequences or heme group is not the only criteria for cation binding toward heme proteins, but the microenvironment of the residues or a specific folding pattern may be responsible for these differential conjugation profile. Binding of these cations may modulate the conformation and functions of these biologically important proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arias-Moreno X, Abian O, Vega S, Sancho J, Velazquez-Campoy A (2011). Protein-cation interactions: structural and thermodynamic aspects. Curr Protein Pept Sci, 12(4): 325–338

    Article  CAS  PubMed  Google Scholar 

  • Bardhan M, Mandal G, Ganguly T J (2009). Steady state, Time resolved and Circular dichroism spectroscopic studies to reveal the nature of interactions of zinc oxide nanoparticles with transport protein Bovine Serum Albumin and to monitor the possible protein conformational changes. Appl Phys (Berl), 106(3): 34701–34705

    Article  Google Scholar 

  • Basak P, Bhattacharyya M (2013). Intrinsic tryptophan fluorescence and related energy transfer in Leghemoglobin isolated from Arachis hypogeal. Turkish. J Biochem, 38: 9–13

    Article  Google Scholar 

  • Basak P, Pattanayak R, Bhattacharyya M (2015). Transition metal induced conformational change of heme proteins. Spectrosc Lett, 48(5): 324–330

    Article  CAS  Google Scholar 

  • Berezin M Y, Achilefu S (2010). Fluorescence lifetime measurements and biological imaging. Chem Rev, 110(5): 2641–2684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berlett B S, Levine R L, Stadtman E R (2000). Use of isosbestic point wavelength shifts to estimate the fraction of a precursor that is converted to a given product. Anal Biochem, 287(2): 329–333

    Article  CAS  PubMed  Google Scholar 

  • Cantor C R, Schimmel P R (1984). Biophysical Chemistry Part II: Techniques for the Study of Biological Structure and Function. New York: W.H.Freeman and Company, 386–398

    Google Scholar 

  • Das P, Mallik A, Halder B, Chakraborty A, Chattopadhyay N (2006). Effect of nanocavity confinement on the rotational relaxation dynamics: 3-acetyl-4-oxo-6,7-dihydro- 12 H indolo- [ 2, 3- a ] quinolizine in micelles. J Chem Phys, 125(4): 044516

    Article  Google Scholar 

  • Dickerson R E, Timkovich R (1975). The Enzymes, (P. Boyer Ed.). New York: Academic Press

    Google Scholar 

  • Faergeman N J, Sigurskjold B W, Kragelund B B, Andersen K V, Knudsen J (1996). Thermodynamics of ligand binding to acylcoenzyme A binding protein studied by titration calorimetry. Biochemistry, 35(45): 14118–14126

    Article  CAS  PubMed  Google Scholar 

  • Giovannetti R, Uddin J (2012). The Use of Spectrophotometry UV-Vis for the Study of Porphyrins, InTech, 95–96, ISBN: 978–953–51–0664–7

    Book  Google Scholar 

  • Gourion-Arsiquaud S, Chevance S, Bouyer P, Garnier L, Montillet J L, Bondon A, Berthomieu C (2005). Identification of a Cd2+- and Zn2+-binding site in cytochrome c using FTIR coupled to an ATR microdialysis setup and NMR spectroscopy. Biochemistry, 44(24): 8652–8663

    Article  CAS  PubMed  Google Scholar 

  • Harbury H A, Loach P A (1960). Oxidation-linked proton functions in heme octa- and undecapeptides from mammalian cytochrome c. J Biol Chem, 235: 3640–3645

    CAS  PubMed  Google Scholar 

  • Heringa J, Argos P (1991). Side-chain clusters in protein structures and their role in protein folding. J Mol Biol, 220(1): 151–171

    Article  CAS  PubMed  Google Scholar 

  • Hua Y J, Liua Y I, Zhanga L X, Zhaoa R M, Qua S S (2005). Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct, 750(1-3): 174–178

    Article  Google Scholar 

  • Kadish K M, Smith K M, Guilard R (2010). Handbook of Porphyrin Science. World Scientific Publishing: Singapore

  • Kahn K, Bruice T C (2003). Comparison of reaction energetics and leaving group interactions during the enzyme-catalyzed and uncatalyzed displacement of chloride from haloalkanes. J Phys Chem B, 107(28): 6876–6685

    Article  CAS  Google Scholar 

  • Kang J, Liu Y, Xie M X, Li S, Jiang M, Wang Y D (2004). Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochim Biophys Acta, 1674(2): 205–214

    Article  CAS  PubMed  Google Scholar 

  • Lakowicz J R (2006). Principles of Fluorescence Spectroscopy, 3rd ed. New York: Plenum Press, 277–285

    Book  Google Scholar 

  • Lehrer S S (1971). Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry, 10(17): 3254–3263

    CAS  PubMed  Google Scholar 

  • Liao M S, Watts J D, Huang M J (2006). DFT/TDDFT study of lanthanide(III) mono- and bisporphyrin complexes. J Phys Chem A, 110(48): 13089–13098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchon J C, Mashiko T, Reed C A (1982). Electron-Transport and Oxygen Utilization. (C.H.O. Ed.) North Holland, New York: Elsevier

    Google Scholar 

  • Mata L, Sanchez L, Calvo M (1997). Interaction of mercury with human and bovine milk proteins. Biosci Biotechnol Biochem, 61(10): 1641–1645

    Article  CAS  PubMed  Google Scholar 

  • Mátyuss L, Szöllosi J, Jenei A (2006). Steady-state fluorescence quenching applications for studying protein structure and dynamics. J Photochem Photobiol B, 83(3): 223–236

    Article  Google Scholar 

  • Muller P (1994). Glossary of terms used in physical organic chemistry. Pure Appl Chem, 66(5): 1077

    Article  Google Scholar 

  • Murayama M (1958). Titrable sulphahydryl groups of Hemoglobin C and fetal Hemoglobin at 0° and 38°. J Biol Chem, 230: 163–168

    CAS  PubMed  Google Scholar 

  • Murayama M (1959). On the nature of the interaction between binding sites for heavy metals (mercapto-mercapto interactions) in normal human hemoglobin. J Biol Chem, 234: 3158–3162

    CAS  PubMed  Google Scholar 

  • Murphy C B, Zhang Y, Troxler T, Ferry V, Martin J J, Jones WE (2004). Probing Förster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J Phys Chem, 108(5): 1537–1543

    Article  CAS  Google Scholar 

  • Nada T, Terazima M (2003). A novel method for study of protein folding kinetics by monitoring diffusion coefficient in time domain. Biophys J, 85(3): 1876–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ordway G A, Garry D J (2004). Myoglobin: an essential hemoprotein in striated muscle. J Exp Biol, 207(Pt 20): 3441–3446

    Article  CAS  PubMed  Google Scholar 

  • Pauling L (1960). The Nature of the Chemical Bond (3rd Edn.), Ithaca, NY: Cornell University Press

    Google Scholar 

  • Pinto M R, Schanze K S (2004). Amplified fluorescence sensing of protease activity with conjugated polyelectrolytes. Proc Natl Acad Sci USA, 101(20): 7505–7510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raphael A L, Gray H B (1991). Semisynthesis of axial-ligand (position 80) mutants of cytochrome c. J Am Chem Soc, 113(3): 1038–1040

    Article  CAS  Google Scholar 

  • Rispens T, Lakemond C M M, Derksen N I, Aalberse R C (2008). Detection of conformational changes in immunoglobulin G using isothermal titration calorimetry with low-molecular-weight probes. Anal Biochem, 380(2): 303–309

    Article  CAS  PubMed  Google Scholar 

  • Ross P D, Subramanian S (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20(11): 3096–3102

    Article  CAS  PubMed  Google Scholar 

  • Samanta U, Pal D, Chakrabarti P (2000). Environment of tryptophan side chains in proteins. Proteins, 38(3): 288–300

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Hachiya K (2002). Interaction of Protein with Ionic Surfactant, Part I: Marcel Dekker; New York

    Google Scholar 

  • Wachter R M, Elsliger M A, Kallio K, Hanson G T, Remington S J (1998). Structural basis of spectral shifts in the yellow-emission variants of green fluorescent protein. Structure, 6(10): 1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Walker V E, Castillo N, Matta C F, Boyd R J. (2010). The Effect of multiplicity on the size of iron(II) and the structure of iron(ii) porphyrins. J Phys Chem A, 114:10315–10319

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Guo D, Yuan X (2006). Influence of copper on the interaction between cytochrome c and sulfite in vitro. J Biochem Mol Toxicol, 20(5): 255–258

    Article  CAS  PubMed  Google Scholar 

  • Wuthrich R Q (1985). Amino acid sequence, haem iron coordination geometry and functional properties of mitochondrial and bacterial ctype cytochromes. Rev Biophys, 18(02): 111–134

    Article  Google Scholar 

  • Yan Y, Marriott G (2003). Analysis of protein interactions using fluorescence technologies. Curr Opin Chem Biol, 7(5): 635–640

    Article  CAS  PubMed  Google Scholar 

  • Zaidi N, Ahmad E, Rehan M, Rabbani G, Ajmal MR, Zaidi Y, Subbarao N, Khan R H (2013). A comprehensive insight into binding of hippuric acid to human serum albumin: A study to uncover its impaired elimination through hemodialysis. J Phys Chem B, 117: 2595–2604

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y Z, Xiang X, Mei P, Dai J, Zhang L L, Liu Y (2009). Spectroscopic studies on the interaction of Congo Red with bovine serum albumin. Spectrochim Acta A Mol Biomol Spectrosc, 72(4): 907–914

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maitree Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, P., Debnath, T., Banerjee, R. et al. Selective binding of divalent cations toward heme proteins. Front. Biol. 11, 32–42 (2016). https://doi.org/10.1007/s11515-016-1388-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-016-1388-0

Keywords

Navigation