Skip to main content
Log in

Padé approximants for functions with branch points — strong asymptotics of Nuttall–Stahl polynomials

  • Published:
Acta Mathematica

Abstract

Let f be a germ of an analytic function at infinity that can be analytically continued along any path in the complex plane deprived of a finite set of points, \({f \in \mathcal{A}(\bar{\mathbb{C}} \setminus A)}\), \({\# A< \infty}\). J. Nuttall has put forward the important relation between the maximal domain of f where the function has a single-valued branch and the domain of convergence of the diagonal Padé approximants for f. The Padé approximants, which are rational functions and thus single-valued, approximate a holomorphic branch of f in the domain of their convergence. At the same time most of their poles tend to the boundary of the domain of convergence and the support of their limiting distribution models the system of cuts that makes the function f single-valued. Nuttall has conjectured (and proved for many important special cases) that this system of cuts has minimal logarithmic capacity among all other systems converting the function f to a single-valued branch. Thus the domain of convergence corresponds to the maximal (in the sense of minimal boundary) domain of single-valued holomorphy for the analytic function \({f\in\mathcal{A}(\bar{\mathbb{C}} \setminus A)}\). The complete proof of Nuttall’s conjecture (even in a more general setting where the set A has logarithmic capacity 0) was obtained by H. Stahl. In this work, we derive strong asymptotics for the denominators of the diagonal Padé approximants for this problem in a rather general setting. We assume that A is a finite set of branch points of f which have the algebro-logarithmic character and which are placed in a generic position. The last restriction means that we exclude from our consideration some degenerated “constellations” of the branch points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M. & Stegun, I. A., Handbook of Mathematical Functions. Dover, New York, 1968.

  2. Akhiezer, N. I., Elements of the Theory of Elliptic Functions. Translations of Mathematical Monographs, 79. Amer. Math. Soc., Providence, RI, 1990.

  3. Aptekarev, A. I., Sharp constants for rational approximations of analytic functions. Mat. Sb., 193 (2002), 3–72 (Russian); English translation in Sb. Math., 193 (2002), 1–72.

  4. Aptekarev, A. I., Analysis of the matrix Riemann–Hilbert problems for the case of higher genus and asymptotics of polynomials orthogonal on a system of intervals. Preprints of Keldysh Institute of Applied Mathematics, Russia Acad. Sci., Moscow, 2008. http://www.keldysh.ru/papers/2008/source/prep2008_28_eng.pdf.

  5. Aptekarev, A. I. & Lysov, V. G., Systems of Markov functions generated by graphs and the asymptotics of their Hermite–Padé approximants. Mat. Sb., 201 (2010), 29–78 (Russian); English translation in Sb. Math., 201 (2010), 183–234.

  6. Aptekarev A. I., Van Assche W.: Scalar and matrix Riemann–Hilbert approach to the strong asymptotics of Padé approximants and complex orthogonal polynomials with varying weight. J. Approx. Theory 129, 129–166 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baik J., Deift P., McLaughlin K. T.-R., Miller P., Zhou X.: Optimal tail estimates for directed last passage site percolation with geometric random variables. Adv. Theor. Math. Phys. 5, 1207–1250 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Baker, G. A. J & Graves-Morris, P., Padé Approximants. Encyclopedia of Mathematics and its Applications, 59. Cambridge Univ. Press, Cambridge, 1996.

  9. Baratchart L., Stahl H., Yattselev M.: Weighted extremal domains and best rational approximation. Adv. Math. 229, 357–407 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Baratchart L., Yattselev M.: Convergent interpolation to Cauchy integrals over analytic arcs. Found. Comput. Math. 9, 675–715 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Baratchart L., Yattselev M.: Convergent interpolation to Cauchy integrals over analytic arcs with Jacobi-type weights. Int. Math. Res. Not. 22, 4211–4275 (2010)

    MathSciNet  MATH  Google Scholar 

  12. Baratchart L., Yattselev M.: Padé approximants to certain elliptic-type functions. J. Anal. Math. 121, 31–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertola M., Mo M. Y.: Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights. Adv. Math. 220, 154–218 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deift, P., Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, 3. Amer. Math. Soc., Providence, RI, 1999.

  15. Deift P., Kriecherbauer T., McLaughlin K. D. T.-R., Venakides S., Zhou X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Comm. Pure Appl. Math. 52, 1335–1425 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Deift P., Kriecherbauer T., McLaughlin K. D. T.-R., Venakides S., Zhou X.: Strong asymptotics of orthogonal polynomials with respect to exponential weights. Comm. Pure Appl. Math. 52, 1491–1552 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Deift P., Zhou X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation. Ann. of Math. 137, 295–368 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dieudonné, J., Foundations of Modern Analysis. Pure and Applied Mathematics, 10-I. Academic Press, New York–London, 1969.

  19. Dumas, S., Sur le déveleppement des fonctions elliptiques en fractions continues. Ph.D. Thesis, Universität Zürich, Zürich, 1908.

  20. Fokas A. S., Its A. R., Kitaev A. V.: Discrete Painlevé equations and their appearance in quantum gravity. Comm. Math. Phys. 142, 313–344 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fokas A. S., It.s A. R., Kitaev A. V.: The isomonodromy approach to matrix models in 2D quantum gravity. Comm. Math. Phys. 147, 395–430 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gakhov, F. D., Boundary Value Problems. Dover, New York, 1990.

  23. Gammel, J. L. & Nuttall, J., Note on generalized Jacobi polynomials, in The Riemann Problem, Complete Integrability and Arithmetic Applications (Bures-sur-Yvette/New York, 1979/1980), Lecture Notes in Math., 925, pp. 258–270. Springer, Berlin–New York, 1982.

  24. Goluzin, G.M., Geometric Theory of Functions of a Complex Variable. Translations of Mathematical Monographs, 26. Amer. Math. Soc., Providence, RI, 1969.

  25. Gonchar, A.A., The rate of rational approximation of certain analytic functions. Mat. Sb., 105(147) (1978), 147–163 (Russian); English translation in Math. USSR–Sb., 34 (1978), 164–179.

  26. Gonchar, A. A. & López Lagomasino, G., Markov’s theorem for multipoint Padé approximants. Mat. Sb., 105(147) (1978), 512–524 (Russian); English translation in Math. USSR–Sb., 34 (1978), 449–459.

  27. Gonchar, A.A. & Rakhmanov, E. A., Equilibrium distributions and the rate of rational approximation of analytic functions. Mat. Sb., 134(176) (1987), 306–352 (Russian); English translation in Math. USSR–Sb., 62 (1989), 305–348.

  28. Kamvissis, S., McLaughlin, K. D. T.-R. & Miller, P. D., Semiclassical Soliton Ensembles for the Focusing Nonlinear Schrödinger Equation. Annals of Mathematics Studies, 154. Princeton Univ. Press, Princeton, NJ, 2003.

  29. Kamvissis, S. & Rakhmanov, E. A., Existence and regularity for an energy maximization problem in two dimensions. J. Math. Phys., 46 (2005), 083505, 24 pp.

  30. Kriecherbauer T., McLaughlin K. D. T.-R.: Strong asymptotics of polynomials orthogonal with respect to Freud weights. Int. Math. Res. Not. 6, 299–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kuijlaars A. B. J., Martínez-Finkelshtein A.: Strong asymptotics for Jacobi polynomials with varying nonstandard parameters. J. Anal. Math. 94, 195–234 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kuijlaars A. B. J., McLaughlin K. T. R., Van Assche W., Vanlessen M.: The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on [-1, 1]. Adv. Math. 188, 337–398 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kuijlaars A. B. J., McLaughlin K. D. T.-R.: Riemann–Hilbert analysis for Laguerre polynomials with large negative parameter. Comput. Methods Funct. Theory 1, 205–233 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kuijlaars A. B. J., McLaughlin K. D. T.-R.: Asymptotic zero behavior of Laguerre polynomials with negative parameter. Constr. Approx. 20, 497–523 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Martínez-Finkelshtein A., Rakhmanov E. A.: Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials. Comm. Math. Phys. 302, 53–111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Martínez-Finkelshtein, A., Rakhmanov, E. A. & Suetin, S.P., Heine, Hilbert, Padé, Riemann, and Stieltjes: John Nuttall’s work 25 years later, in Recent Advances in Orthogonal Polynomials, Special Functions, and their Applications, Contemp. Math., 578, pp. 165–193. Amer. Math. Soc., Providence, RI, 2012.

  37. Nikishin E. M.: On the convergence of diagonal Padé approximants to certain functions. Math. USSR Sb. 30, 249–260 (1976)

    Article  MATH  Google Scholar 

  38. Nikishin, E. M. & Sorokin, V. N., Rational Approximations and Orthogonality. Translations of Mathematical Monographs, 92. Amer. Math. Soc., Providence, RI, 1991.

  39. Nuttall, J., The convergence of Padé approximants to functions with branch points, in Padé and Rational Approximation (Tampa, FL, 1976), pp. 101–109. Academic Press, New York, 1977.

  40. Nuttall, J., Sets of minimum capacity, Padé approximants and the bubble problem, in Bifurcation Phenomena in Mathematical Physics and Related Topics (Dordrecht, 1980), pp. 185–201. Reidel, 1980.

  41. Nuttall J.: Asymptotics of diagonal Hermite–Padé polynomials. J. Approx. Theory 42, 299–386 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  42. Nuttall J.: Asymptotics of generalized Jacobi polynomials. Constr. Approx. 2, 59–77 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nuttall J.: Padé polynomial asymptotics from a singular integral equation. Constr. Approx. 6, 157–166 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. Nuttall J., Singh S. R.: Orthogonal polynomials and Padé approximants associated with a system of arcs. J. Approx. Theory 21, 1–42 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  45. Padé H.: Sur la représentation approchée d’une fonction par des fractions rationnelles. Ann. Sci. ´ Ecole Norm. Sup. 9, 3–93 (1892)

    MathSciNet  Google Scholar 

  46. Perevoznikova, E. A. & Rakhmanov, E. A., Variation of the equilibrium energy and S-property of compacta of minimal capacity. Manuscript, 1994.

  47. Pommerenke, C., Univalent Functions. Studia Mathematica/Mathematische Lehrbücher, 25. Vandenhoeck & Ruprecht, Göttingen, 1975.

  48. Ransford, T., Potential Theory in the Complex Plane. London Mathematical Society Student Texts, 28. Cambridge Univ. Press, Cambridge, 1995.

  49. Saff, E. B. & Totik, V., Logarithmic Potentials with External Fields. Grundlehren der Mathematischen Wissenschaften, 316. Springer, Berlin–Heidelberg, 1997.

  50. Stahl, H., Extremal domains associated with an analytic function. I, II. Complex Variables Theory Appl., 4 (1985), 311–324, 325–338.

  51. Stahl H.: The structure of extremal domains associated with an analytic function. Complex Variables Theory Appl. 4, 339–354 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  52. Stahl, H., Orthogonal polynomials with complex-valued weight function. I, II. Constr. Approx., 2 (1986), 225–240, 241–251.

  53. Stahl H.: On the convergence of generalized Padé approximants. Constr. Approx. 5, 221–240 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  54. Stahl, H., Diagonal Padé approximants to hyperelliptic functions. Ann. Fac. Sci. Toulouse Math., Special issue (1996), 121–193.

  55. Stahl H.: The convergence of Padé approximants to functions with branch points. J. Approx. Theory 91, 139–204 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  56. Suetin, S.P., On the uniform convergence of diagonal Padé approximants for hyperelliptic functions. Mat. Sb., 191 (2000), 81–114 (Russian); English translation in Sb. Math., 191 (2000), 1339–1373.

  57. Suetin, S.P., On the convergence of Chebyshev continued fractions for elliptic functions. Mat. Sb., 194 (2003), 63–92 (Russian); English translation in Sb. Math., 194 (2003), 1807–1835.

  58. Szegő, G., Orthogonal Polynomials. Colloquium Publications, 23. Amer. Math. Soc., Providence, RI, 1975.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim L. Yattselev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aptekarev, A.I., Yattselev, M.L. Padé approximants for functions with branch points — strong asymptotics of Nuttall–Stahl polynomials. Acta Math 215, 217–280 (2015). https://doi.org/10.1007/s11511-016-0133-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-016-0133-5

2000 Math. Subj. Classification

Keywords

Navigation