Skip to main content
Log in

Physicochemical and Functional Properties of Spirulina and Chlorella Proteins Obtained by Iso-Electric Precipitation

  • RESEARCH
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In this study, microalgae proteins (Spirulina and Chlorella) were extracted, characterized, and investigated for their potential techno-functionalities. The proteins from the microalgae biomass were extracted by alkaline solubilization followed by iso-electric precipitation. Subsequently, their physicochemical characteristics (microstructure, thermal stability, secondary structure, and crystallinity) and functional properties (protein solubility, water and oil holding capacities, as well as emulsifying and foaming properties) were investigated. Spirulina biomass resulted in a high extraction yield (37%), giving a protein isolate containing 90% of proteins. Both Spirulina and Chlorella protein extracts displayed high thermal stability. FTIR analysis revealed a clear difference in the secondary structure of the protein extracts. A slight difference in microstructure was noted between the two proteins, but both had small particle sizes and uniform dispersity. Spirulina proteins were more crystalline (53%) than the Chlorella proteins (36%). Spirulina showed better functional properties (protein solubility, emulsifying, and foaming properties) compared to Chlorella. We observed that the Spirulina protein had more water-holding capacity than the Chlorella protein, while the latter also showed appreciable oil-holding capacity. These findings suggest that the microalgal proteins could be useful in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig.6
Fig.7

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. A. Ahmad, S.S. Ashraf, Sustainable food and feed sources from microalgae: Food security and the circular bioeconomy. Algal Res. 74, 103185 (2023)

    Article  Google Scholar 

  2. R.P. Parameswari, T. Lakshmi, Microalgae as a potential therapeutic drug candidate for neurodegenerative diseases. J. Biotechnol. 358, 128–139 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. A.P. Ferreira de Oliveira, A.P.A. Bragotto, Microalgae-based products: Food and public health. Future Foods 6, 100157 (2022)

    Article  CAS  Google Scholar 

  4. Y. Torres-Tiji, F.J. Fields, S.P. Mayfield, Microalgae as a future food source. Biotechnol. Adv. 41, 107536 (2020)

    Article  CAS  PubMed  Google Scholar 

  5. M. Gouda et al., Microalgae Bioactive Carbohydrates as a Novel Sustainable and Eco-Friendly Source of Prebiotics: Emerging Health Functionality and Recent Technologies for Extraction and Detection. Front. Nutr. 9, 806692 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  6. A. Kusmayadi et al., Microalgae as sustainable food and feed sources for animals and humans - Biotechnological and environmental aspects. Chemosphere 271, 129800 (2021)

    Article  CAS  PubMed  Google Scholar 

  7. S. Khanra et al., Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food Bioprod. Process. 110, 60–84 (2018)

    Article  CAS  Google Scholar 

  8. M. Edelmann et al., Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. J. Food Compos. Anal. 82, 103226 (2019)

    Article  CAS  Google Scholar 

  9. M. Wang, Z. Yin, M. Zeng, Microalgae as a promising structure ingredient in food: Obtained by simple thermal and high-speed shearing homogenization. Food Hydrocolloids 131, 107743 (2022)

    Article  CAS  Google Scholar 

  10. L. Soto-Sierra, P. Stoykova, Z.L. Nikolov, Extraction and fractionation of microalgae-based protein products. Algal Res. 36, 175–192 (2018)

    Article  Google Scholar 

  11. V.S. Uma et al., Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities. Phytochem Rev 22, 1–26 (2022)

    Google Scholar 

  12. M.V. Oviedo-Olvera et al., Prebiotic emergent sources for aquaculture: Microalgae and insects. Aquac Fish. (2023)

  13. A.K. Gohara-Beirigo et al., Microalgae trends toward functional staple food incorporation: Sustainable alternative for human health improvement. Trends Food Sci. Technol. 125, 185–199 (2022)

    Article  CAS  Google Scholar 

  14. S. Khemiri et al., Microalgae biomass as an additional ingredient of gluten-free bread: Dough rheology, texture quality and nutritional properties. Algal Res. 50, 101998 (2020)

    Article  Google Scholar 

  15. H. Goshtasbi et al., Harnessing microalgae as sustainable cellular factories for biopharmaceutical production. Algal Res. 74, 103237 (2023)

    Article  Google Scholar 

  16. J. Zhou et al., Pulsed electric fields (PEF), pressurized liquid extraction (PLE) and combined PEF + PLE process evaluation: Effects on Spirulina microstructure, biomolecules recovery and Triple TOF-LC-MS-MS polyphenol composition. Innov. Food Sci. Emerg. Technol. 77, 102989 (2022)

    Article  CAS  Google Scholar 

  17. W.M. Qazi et al., Protein Enrichment of Wheat Bread with Microalgae: Microchloropsis gaditana, Tetraselmis chui and Chlorella vulgaris. Foods. 10(12) (2021)

  18. A.P. Batista et al., Microalgae as Functional Ingredients in Savory Food Products: Application to Wheat Crackers. Foods. 8(12) (2019)

  19. A. Marzec et al., Effect of Type of Flour and Microalgae (Chlorella vulgaris) on the Rheological, Microstructural, Textural, and Sensory Properties of Vegan Muffins. Appl. Sci. 13(13), 7632 (2023)

    Article  CAS  Google Scholar 

  20. H.A. Ismail et al., Functionalization of Ricotta cheese with powder of spirulina platensis: physicochemical, sensory, and microbiological properties. Int. J. Food Prop. 26(1), 1968–1983 (2023)

    Article  CAS  Google Scholar 

  21. S.C. da Silva et al., Spray-dried Spirulina platensis as an effective ingredient to improve yogurt formulations: Testing different encapsulating solutions. Journal of Functional Foods 60, 103427 (2019)

    Article  Google Scholar 

  22. B.F. Lucas et al., Spirulina for snack enrichment: Nutritional, physical and sensory evaluations. LWT 90, 270–276 (2018)

    Article  CAS  Google Scholar 

  23. J. Bazarnova et al., Use of Microalgae Biomass for Fortification of Food Products from Grain. Foods 10(12), 3018 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. A.P. Batista et al., Colored Food Emulsions—Implications of Pigment Addition on the Rheological Behavior and Microstructure. Food Biophys. 1(4), 216–227 (2006)

    Article  Google Scholar 

  25. H. Hassanzadeh et al., The physicochemical properties of the spirulina-wheat germ-enriched high-protein functional beverage based on pear-cantaloupe juice. Food Sci. Nutr. 10(11), 3651–3661 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. L. Davani et al., Safety issues in nutraceutical exploitation of Chlorella vulgaris, Arthrospira Platensis and Scenedesmus sp. microalgae. J Food Compos Anal 123, 105568 (2023)

    Article  CAS  Google Scholar 

  27. N. Maehle, F. Skjeret, Microalgae-based food: Purchase intentions and willingness to pay. Future Foods 6, 100205 (2022)

    Article  CAS  Google Scholar 

  28. J. Zhou et al., Research progress in microalgae nutrients: emerging extraction and purification technologies, digestive behavior, and potential effects on human gut. Crit Rev Food Sci Nutr. p. 1–21 (2023)

  29. S. Bleakley, M. Hayes, Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods. 6(5) (2017)

  30. V. Sousa et al., Microalgae biomass as an alternative source of biocompounds: New insights and future perspectives of extraction methodologies. Food Res. Int. 173, 113282 (2023)

    Article  CAS  PubMed  Google Scholar 

  31. Y. Eilam et al., Microalgae-Sustainable Source for Alternative Proteins and Functional Ingredients Promoting Gut and Liver Health. Glob Chall 7(5), 2200177 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  32. S. Benelhadj et al., Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate. Food Chem. 194, 1056–1063 (2016)

    Article  CAS  PubMed  Google Scholar 

  33. Y. Chen et al., Physicochemical and functional properties of proteins extracted from three microalgal species. Food Hydrocolloids 96, 510–517 (2019)

    Article  CAS  Google Scholar 

  34. L. Grossmann, J. Hinrichs, J. Weiss, Solubility of extracted proteins from Chlorella sorokiniana, Phaeodactylum tricornutum, and Nannochloropsis oceanica: Impact of pH-value. Lwt 105, 408–416 (2019)

    Article  CAS  Google Scholar 

  35. Y. Fu et al., Physicochemical and functional properties of the muscle protein fraction of Hypomesus olidus. Food Chem X 16, 100484 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J.A. Gerde et al., Optimizing protein isolation from defatted and non-defatted Nannochloropsis microalgae biomass. Algal Res. 2(2), 145–153 (2013)

    Article  Google Scholar 

  37. P. Shen et al., The impact of hempseed dehulling on chemical composition, structure properties and aromatic profile of hemp protein isolate. Food Hydrocolloids 106, 105889 (2020)

    Article  CAS  Google Scholar 

  38. AOAC, Official methods of analysis of AOAC international (19th ed.). Washington, DC, USA: Association of Official Analytical Chemists, 2000.

  39. A. Bolje, S. Gobec, Analytical Techniques for Structural Characterization of Proteins in Solid Pharmaceutical Forms: An Overview. Pharmaceutics. 13(4) (2021).

  40. K. Shevkani et al., Structural and functional characterization of kidney bean and field pea protein isolates: A comparative study. Food Hydrocolloids 43, 679–689 (2015)

    Article  CAS  Google Scholar 

  41. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9(7), 671–675 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. Arif et al., A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal. Renewable Energy 163, 1973–1982 (2021)

    Article  CAS  Google Scholar 

  43. G. Xiang et al., The effect of heat-moisture treatment changed the binding of starch, protein and lipid in rice flour to affect its hierarchical structure and physicochemical properties. Food Chemistry: X 19, 100785 (2023)

    CAS  PubMed  Google Scholar 

  44. Y. Ladjal-Ettoumi et al., Pea, Chickpea and Lentil Protein Isolates: Physicochemical Characterization and Emulsifying Properties. Food Biophys. 11(1), 43–51 (2016)

    Article  Google Scholar 

  45. M. Jin et al., Physicochemical and functional properties of Pleurotus geesteranus proteins. Food Res. Int. 162(Pt A), 111978 (2022)

    Article  CAS  PubMed  Google Scholar 

  46. B. Fang et al., Structural, functional properties, and volatile profile of hemp protein isolate as affected by extraction method: Alkaline extraction-isoelectric precipitation vs salt extraction. Food Chem. 405(Pt B), 135001 (2023)

    Article  CAS  PubMed  Google Scholar 

  47. K.N. Pearce, J.E. Kinsella, Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agric. Food Chem. 26(3), 716–723 (1978)

    Article  CAS  Google Scholar 

  48. T. Chen, D.M. Oakley, Thermal analysis of proteins of pharmaceutical interest. Thermochim. Acta 248, 229–244 (1995)

    Article  CAS  Google Scholar 

  49. A. Schwenzfeier, P.A. Wierenga, H. Gruppen, Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour. Technol. 102(19), 9121–9127 (2011)

    Article  CAS  PubMed  Google Scholar 

  50. Silverstein, Spectrometric identification of organic compounds (Wiley, 1980)

    Google Scholar 

  51. M. Jackson, H.H. Mantsch, The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. Biol. 30(2), 95–120 (1995)

    Article  CAS  PubMed  Google Scholar 

  52. P.I. Haris, F. Severcan, FTIR spectroscopic characterization of protein structure in aqueous and non-aqueous media. J. Mol. Catal. B Enzym. 7, 207–221 (1999)

    Article  CAS  Google Scholar 

  53. X. Zhao et al., FTIR spectra studies on the secondary structures of 7S and 11S globulins from soybean proteins using AOT reverse micellar extraction. Food Hydrocolloids 22(4), 568–575 (2008)

    Article  CAS  Google Scholar 

  54. S. Benelhadj et al., Extraction of Arthrospira platensis (Spirulina) proteins via Osborne sequential procedure: Structural and functional characterizations. J. Food Compos. Anal. 115, 104984 (2023)

    Article  CAS  Google Scholar 

  55. G. Hastings et al. Starch, Lipid, and Protein Accumulation in Nutrient-Stressed Microalgal Cells Studied Using Fourier Transform Infrared Microscopy. 2018.

  56. M. Bai et al., Relationship between Molecular Structure Characteristics of Feed Proteins and Protein In vitro Digestibility and Solubility. Asian Australas. J. Anim. Sci. 29, 1159–1165 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  57. R.N. Pereira et al., Production of Whey Protein-Based Aggregates Under Ohmic Heating. Food Bioprocess Technol. 9(4), 576–587 (2016)

    Article  CAS  Google Scholar 

  58. W. Yu et al., Physicochemical properties and antioxidant potential of protein isolate from camellia cake (Camellia oleifera Abel.): Effect of different processing techniques on industrial scale. LWT 184, 114993 (2023)

    Article  CAS  Google Scholar 

  59. J.H. Lee et al., Structural, physicochemical, and immune-enhancing properties of edible insect protein isolates from Protaetia brevitarsis larvae. Food Chemistry: X 18, 100722 (2023)

    CAS  PubMed  Google Scholar 

  60. E. Ostrowska-Ligęza et al., Characterization of Thermal Properties of Ruby Chocolate Using DSC, PDSC and TGA Methods. Appl. Sci. 13(9), 5221 (2023)

    Article  Google Scholar 

  61. Y. Zhang et al., Survey on Methods for Investigating Protein Functionality and Related Molecular Characteristics. Foods 10(11), 2848 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. M. Krekora et al., Raman and thermal (TGA and DSC) studies of gluten proteins supplemented with flavonoids and their glycosides. J. Cereal Sci. 111, 103672 (2023)

    Article  CAS  Google Scholar 

  63. T. Ziyue et al., Thermal behavior and kinetic mechanism of microalgae and model compounds. Fuel 344, 128037 (2023)

    Article  CAS  Google Scholar 

  64. N.S. Masite et al., Trace Metals, Crude Protein, and TGA-FTIR Analysis of Evolved Gas Products in the Thermal Decomposition of Roasted Mopane Worms, Sweet Corn, and Peanuts. Int. J. Food Sci. 2022, 1509569 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  65. A. Marcilla et al., Characterization of microalgal species through TGA/FTIR analysis: Application to nannochloropsis sp. Thermochim. Acta 484(1–2), 41–47 (2009)

    Article  CAS  Google Scholar 

  66. F. Li et al., A study on growth and pyrolysis characteristics of microalgae using Thermogravimetric Analysis-Infrared Spectroscopy and synchrotron Fourier Transform Infrared Spectroscopy. Bioresour. Technol. 229, 1–10 (2017)

    Article  CAS  PubMed  Google Scholar 

  67. W.-H. Chen et al., Thermal degradation of carbohydrates, proteins and lipids in microalgae analyzed by evolutionary computation. Energy Convers. Manage. 160, 209–219 (2018)

    Article  CAS  Google Scholar 

  68. G. Ozsin, A.E. Putun, Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR. Waste Manag. 64, 315–326 (2017)

    Article  CAS  PubMed  Google Scholar 

  69. J. Du et al., Effects of ultrasonic and steam-cooking treatments on the physicochemical properties of bamboo shoots protein and the stability of O/W emulsion. Heliyon 9(9), e19825 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. J. Li et al., The characterization of structural, thermal, pasting and gel properties of the blends of laccase- and tyrosinase-treated potato protein and starch. Lwt 153, 112463 (2022)

    Article  CAS  Google Scholar 

  71. M.A. Malik, C.S. Saini, Heat treatment of sunflower protein isolates near isoelectric point: Effect on rheological and structural properties. Food Chem. 276, 554–561 (2019)

    Article  CAS  PubMed  Google Scholar 

  72. L.A. Arogundade, T.-H. Mu, T.F. Akinhanmi, Structural, physicochemical and interfacial stabilisation properties of ultrafiltered African yam bean (Sphenostylis stenocarpa) protein isolate compared with those of isoelectric protein isolate. LWT Food Sci. Technol. 69, 400–408 (2016)

    Article  CAS  Google Scholar 

  73. Z. He et al., Surface Characterization of Cottonseed Meal Products by SEM, SEM-EDS, XRD and XPS Analysis. J Mater Sci Res 7, 28 (2017)

    Google Scholar 

  74. Z.Y. Dong et al., Effects of ultrasonic pretreatment on the structure and functionality of chicken bone protein prepared by enzymatic method. Food Chem. 299, 125103 (2019)

    Article  CAS  PubMed  Google Scholar 

  75. M. Du et al., Extraction, physicochemical characteristics and functional properties of Mung bean protein. Food Hydrocolloids 76, 131–140 (2018)

    Article  CAS  Google Scholar 

  76. Y.P. Timilsena et al., Physicochemical and functional properties of protein isolate produced from Australian chia seeds. Food Chem. 212, 648–656 (2016)

    Article  CAS  PubMed  Google Scholar 

  77. C.-H. Tang, X. Sun, S.-W. Yin, Physicochemical, functional and structural properties of vicilin-rich protein isolates from three Phaseolus legumes: Effect of heat treatment. Food Hydrocoll 23(7), 1771–1778 (2009)

    Article  CAS  Google Scholar 

  78. M. Ma et al., Physicochemical and functional properties of protein isolate obtained from cottonseed meal. Food Chem. 240, 856–862 (2018)

    Article  CAS  PubMed  Google Scholar 

  79. A.A.O. Aletor Oluwatoyin, K. Ipinmoroti, Chemical composition of common eafy vegetables and functional properties of their leaf protein concentrates. Food Chemistry 78(1), 63–68 (2002)

    Article  Google Scholar 

  80. C. Soria-Hernández, S. Serna-Saldívar, C. Chuck-Hernández, Physicochemical and Functional Properties of Vegetable and Cereal Proteins as Potential Sources of Novel Food Ingredients. Food Technol Biotechnol 53(3), 269–277 (2015)

    PubMed  PubMed Central  Google Scholar 

  81. Y. Ladjal-Ettoumi, M. Chibane, Some physicochemical and functional properties of pea, chickpea and lentil whole flours. Int. Food Res. J. 22(3), 987–996 (2015)

    CAS  Google Scholar 

  82. M. Cheng et al., Effect of dynamic high-pressure microfluidization on physicochemical, structural, and functional properties of oat protein isolate. Innov. Food Sci. Emerg. Technol. 82, 103204 (2022)

    Article  CAS  Google Scholar 

  83. M. Yu et al., Physicochemical and functional properties of protein extracts from Torreya grandis seeds. Food Chem. 227, 453–460 (2017)

    Article  CAS  PubMed  Google Scholar 

  84. J.E. Kinsella, Functional properties of proteins: Possible relationships between structure and function in foams. Food Chem. 7(4), 273–288 (1981)

    Article  CAS  Google Scholar 

  85. D.J. McClements, J. Rao, Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit. Rev. Food Sci. Nutr. 51(4), 285–330 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to all co-authors for their contributions to this manuscript and the support provided by the Higher School of Food Science and Agri-Food Industry (ESSAIA, Algiers, Algeria) and Centre de Recherche 'd'Analyses PhysicoChimiques (CRAPC, Bousmail, Algeria).

Funding

This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Yakoub:wrote the main manuscript text and carried out some lab work Hamadi and Douik carried out the lab work Johar: FTIR spectra deconvolution Zakaria: help in FTIR, SEM and TGA Mohamed Nadir: statistical analysis Zidour: help in FTIR and Kjaldahl Akmal: help in SEM and revision of the whole manuscript

Corresponding author

Correspondence to Yakoub Ladjal-Ettoumi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ladjal-Ettoumi, Y., Douik, L., Hamadi, M. et al. Physicochemical and Functional Properties of Spirulina and Chlorella Proteins Obtained by Iso-Electric Precipitation. Food Biophysics (2024). https://doi.org/10.1007/s11483-024-09836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11483-024-09836-8

Keywords

Navigation