Skip to main content
Log in

Effects of Partial Replacement of Gelatin in High Sugar Gels with Gellan on their Textural, Rhelogical, and Thermal Properties

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

Effects of partial replacement of gelatin in simulated gummy confections with either high acyl or deacylated gellan on their textural, rheological, and thermal properties were investigated. Atomic force microscopy (AFM) images of high acyl and deacylated gellan revealed that both gellan types formed finely stranded networks as a result from air-drying of dilute aqueous solutions, the strand thickness of which was approximately 0.5–1 nm. Simulated gummy confections containing 5.025–7.1 % w/w gelatin, 0–0.075 % w/w high acyl or deacylated gellan, and 73–75 % w/w corn syrup and sucrose combined were prepared and analyzed using texture profile analysis (TPA) and small amplitude oscillatory shear measurements. The principal component analysis (PCA) of textural attributes obtained from TPA identified a cluster in the first quadrant formed by samples containing 7.1 % w/w gelatin but no gellan and those containing 6.025 % w/w gelatin and 0.075 % w/w high acyl or deacylated gellan. All simulated gummy confections showed storage modulus (G′) values greater than loss modulus (G″) values at 0.1 rad/s, G″ increasing more steeply with increasing angular frequency, and G′-G″ crossovers within the examined angular frequency range (0.1–100 rad/s), typical of high solid biopolymer gels. Furthermore, increasing gellan concentration at a total concentration of the gelling agents (i.e., gelatin and gellan) of 6.1 % w/w increased the melting temperature. These results attest the feasibility of improving the heat stability of gummy confections by the partial replacement of gelatin with either high acyl or deacylated gellan with maintaining textures characteristics of gummy confections containing gelatin as the only gelling agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. L. DeMars, G. R. Ziegler, Food Hydrocoll. 15, 643–653 (2001)

    Article  CAS  Google Scholar 

  2. S. Kasapis, J. Mitchell, R. Abeysekera, W. MacNaughtan, Trends Food Sci. Technol. 15, 298–304 (2004)

    Article  CAS  Google Scholar 

  3. R. Ergun, R. Lietha, R. H. Hartel, Crit. Rev. Food Sci. Nutr. 50, 162–192 (2010)

    Article  CAS  Google Scholar 

  4. N. M. Hani, S. R. Romli, M. Ahmad, Int. J. Food Sci. Technol. 50, 331–339 (2015)

    Article  CAS  Google Scholar 

  5. S. Kasapis, I. M. Al-Marhoobi, Biomacromolecules 4, 1142–1149 (2003)

    Article  CAS  Google Scholar 

  6. P. Burey, B. R. Bhandari, R. P. G. Rutgers, P. J. Halley, P. J. Torley, Int. J. Food Prop. 12, 176–210 (2009)

    Article  CAS  Google Scholar 

  7. P. H. M. Marfil, A. C. B. M. Anhe, V. R. N. Telis, Food Biophys. 7, 236–243 (2012)

    Article  Google Scholar 

  8. C. Joly-Duhamel, D. Hellio, M. Djabourov, Langmuir 18, 7208–7217 (2002)

    Article  CAS  Google Scholar 

  9. C. Joly-Duhamel, D. Hellio, A. Ajdari, M. Djabourov, Langmuir 18, 7158–7166 (2002)

    Article  CAS  Google Scholar 

  10. M. Djabourov, J. Maquet, H. Theveneau, J. Leblond, P. Papon, Brit. Polym. J. 17, 169–174 (1985)

    CAS  Google Scholar 

  11. A. R. Mackie, A. P. Gunning, M. J. Ridout, V. J. Morris, Biopolymers 46, 245–252 (1998)

    Article  CAS  Google Scholar 

  12. G. R. Ziegler, B. MacMillan, B. J. Balcom, Food Res. Int. 36, 331–340 (2003)

    Article  CAS  Google Scholar 

  13. M. B. Sundharsan, G. R. Ziegler, J. L. Duda, Food Bioprod. Process. 84, 60–72 (2004)

    Article  Google Scholar 

  14. P. Delgado, S. Banon, J. Food 13, 329–335 (2015)

    CAS  Google Scholar 

  15. H. McEvoy, S. B. Ross-Murphy, A. H. Clark, Polymer 26, 1493–1500 (1985)

    Article  CAS  Google Scholar 

  16. R. H. Tromp, F. van de Velde, J. van Riel, M. Paques, Food Res. Int. 34, 931–938 (2001)

    Article  CAS  Google Scholar 

  17. H. Firoozmand, D. Rousseau, Food Hydrocoll. 50, 84–93 (2015)

    Article  CAS  Google Scholar 

  18. V. B. Tolstoguzov, Food Hydrocoll. 4, 429–468 (1991)

    Article  CAS  Google Scholar 

  19. N. A. Morrison, G. Sworn, R. C. Clark, Y. L. Chen, T. Talashek, Progr. Colloid Polym. Sci. 114, 127–131 (1999)

    Article  CAS  Google Scholar 

  20. P. E. Jansson, B. Lindberg, P. A. Sanford, Carbohydr. Res. 124, 135–139 (1983)

    Article  CAS  Google Scholar 

  21. M. A. O’Neil, R. R. Selvendran, V. J. Morris, Carbohydr. Res. 124, 123–133 (1983)

    Article  Google Scholar 

  22. M. S. Kuo, A. J. Mort, A. Dell, Carbohydr. Res. 156, 173–187 (1986)

    Article  CAS  Google Scholar 

  23. J. K. Baird, T. A. Talashek, H. Chang, in Gums and Stabilisers for the Food Industry 6, ed by G. O. Phillips, P. A. Williams, D. J. Wedlock. (IRL Press, Oxford, 1992), pp. 479–487

    Google Scholar 

  24. E. R. Morris, M. G. E. Gothard, M. W. N. Hember, C. E. Manning, G. Robinson, Carbohydr. Polym. 30, 165–175 (1996)

    Article  CAS  Google Scholar 

  25. R. C. Valli, F. J. Miskiel, in Handbook of Dietary Fiber, ed by S. S. Cho, M. L. Dreher. (Marcel Dekker, Inc., New York, 2001), pp. 695–720

    Google Scholar 

  26. S. Ikeda, S. Gohtani, K. Nishinari, Q. Zhong, Food Sci. Technol. Res. 19, 201–210 (2013)

    Article  CAS  Google Scholar 

  27. V. J. Morris, in Functional Properties of Food Macromolecules, ed by S. E. Hill, D. A. Ledward, J. R. Mitchell. (Aspen Publishers, Gaithersburg, 1998), pp. 143–226

    Google Scholar 

  28. S. Ikeda, Y. Nitta, T. Temsiripong, R. Pongsawatmanit, K. Nishinari, Food Hydrocoll. 18, 727–735 (2004)

    Article  CAS  Google Scholar 

  29. M. Rinaudo, Biomacromolecules 5, 1155–1165 (2004)

    Article  CAS  Google Scholar 

  30. M. Annaka, J.-H. Honda, T. Nakahira, H. Seki, M. Tokita, Progr. Colloid Polym. Sci. 114, 25–30 (1999)

    Article  CAS  Google Scholar 

  31. S. Matsukawa, Z. Huang, T. Watanabe, Progr. Colloid Polym. Sci. 114, 92–97 (1999)

    Article  CAS  Google Scholar 

  32. E. Miyoshi, K. Nishinari, Progr. Colloid Polym. Sci. 114, 68–82 (1999)

    Article  CAS  Google Scholar 

  33. G. Sworn, S. Kasapis, Progr. Colloid Polym. Sci. 114, 116–122 (1999)

    Article  CAS  Google Scholar 

  34. Y. Yuguchi, H. Urakawa, S. Kitamura, I. Wataoka, K. Kajiwara, Progr. Colloid Polym. Sci. 114, 41–47 (1999)

    Article  CAS  Google Scholar 

  35. V. J. Morris, A. P. Gunning, A. R. Kirby, A. Round, K. Waldron, A. Ng, J. Int, Biol. Macromolecules 21, 61–66 (1997)

    Article  CAS  Google Scholar 

  36. S. Ikeda, V. J. Morris, K. Nishinari, Biomacromolecules 2, 1331–1337 (2001)

    Article  CAS  Google Scholar 

  37. M. C. Bourne, Food Texture and Viscosity: Concept and Measurement, 2nd edn. (Academic Press, New York, 2002)

    Google Scholar 

  38. A. P. Singh, R. S. Lakes, S. Gunasekaran, Rheol. Acta 46, 131–142 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Pennsylvania manufacturing confectioners’ association (PMCA). We thank Professor Richard W. Hartel for valuable discussions and letting us use his laboratory equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ikeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, S., Henry, K. Effects of Partial Replacement of Gelatin in High Sugar Gels with Gellan on their Textural, Rhelogical, and Thermal Properties. Food Biophysics 11, 400–409 (2016). https://doi.org/10.1007/s11483-016-9454-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-016-9454-3

Keywords

Navigation