Skip to main content

Rheological and thermal properties near the sol-gel transition of gellan gum aqueous solutions

  • Conference paper
  • First Online:
Physical Chemistry and Industrial Application of Gellan Gum

Part of the book series: Progress in Colloid and Polymer Science ((PROGCOLLOID,volume 114))

Abstract

The effects of monovalent and divalent cations on the rheological and thermal properties of gellan gum aqueous solutions have been monitored using rheological measurements and differential scan ning calorimetry (DSC). The transition temperatures of coil-helix, T ch, and sol-gel, T sg, in gellan gum solutions were detected by both thermal scanning rheology and DSC. The phase diagrams of gellan gum solutions with and without monovalent cations consisting of three regions (sol-I, sol-II and gel) were proposed. The order of effectiveness of the monovalent cations in promoting ordered structures followed the Hofmeister series Cs+ > K+ > Na+ > Li+. The experimental results indicated that gelation of gellan gum occurred with the subsequent aggregation of helices, and the gellan gum systems where T ch and T sg occurred individually did not show thermal hysteresis in the cooling and heating processes; however, the gellan gum systems where T sh and T sg occurred concurrently involved the thermally stable junction zones formed by fairly well aggregated helices, and so these systems showed conspicuous thermal hysteresis. The gelation mechanism of gellan gum in the presence of divalent cations was substantially different from that with and without monovalent cations. On cooling, the divalent cations immediately interacted with gellan gum segments to form the specific ordered structures at temperatures higher than T ch. With progressive addition of divalent cations, these ordered structures stabilized by divalent cations increased stoichiometrically and became extremely thermally stable. It is suggested from rheological results that the ordered structures involving the specific cation—polyanion interaction could lead to the formation of an elastic gel. Judging from the DSC results, they were gradually melted at various temperatures by the subsequent heating.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Harris P (ed) (1990) Food gels. Elsevier Applied Science, London, pp 1–476

    Google Scholar 

  2. Nishinari K, Doi E (eds) (1994) Food hydrocolloids: structures, properties and functions, Plenum, New York, pp 1–510

    Google Scholar 

  3. Jansson P, Lindberg Sandford PA (1983) Carbohydr Res 124: 135–139

    Article  CAS  Google Scholar 

  4. O’Neill MA, Selvenderan RR, Morris VJ (1983) Carbohydr Res 124: 123–133

    Article  CAS  Google Scholar 

  5. Sanderson GR (1990) In: Harris P (ed) Food gels. Elsevier Applied Science, London, pp 201–232

    Google Scholar 

  6. Crescenzi V, Dentini M, Coviello T, Rizzo R (1986) Carbohydr Res 149: 425–432

    Article  CAS  Google Scholar 

  7. Grasdalen H, Smidsrod O (1987) Carbohydr Polym 7: 371–393

    Article  CAS  Google Scholar 

  8. Crescenzi V, Dentini M, Dea ICM (1988) Carbohydr Res 21: 283–302

    Google Scholar 

  9. Dentini M, Coviello T, Burchard W, Crescenzi V (1988) Macromolecules 21: 3312–3320

    Article  CAS  Google Scholar 

  10. Shi X (1990) Thesis. L’Universite Joseph-Fourier, Grenoble (in French)

    Google Scholar 

  11. Milas M, Shi X, Rinaudo M (1990) Biopolymers 30: 451–464

    Article  CAS  Google Scholar 

  12. Robinson G, Manning CE, Morris ER (1991) In: Dickinson E (ed) Food polymers, gels and colloids. Royal Society of Chemistry, London, pp 22–33

    Google Scholar 

  13. Moritaka H, Fukuba H, Kumeno K, Nakahama N, Nishinari (1991) Food Hydrocoll 4: 495–507

    CAS  Google Scholar 

  14. Manning CE (1992) Thesis. Cranfield Institute of Technology, Silsoe College, Silsoe

    Google Scholar 

  15. Special Issue (1993) Food Hydrocoll 7: 1

    Google Scholar 

  16. Miyoshi E, Takaya T, Nishinari (1994) Food Hydrocoll 8: 505–527

    CAS  Google Scholar 

  17. Miyoshi E, Takaya T, Nishinari (1994) Food Hydrocoll 8: 529–547

    Article  CAS  Google Scholar 

  18. Miyoshi E, Takaya T, Nishinari (1995) Makromol Symp 99: 83–91

    CAS  Google Scholar 

  19. Miyoshi E, Takaya T, Nishinari (1995) Thermochim Acta 267: 269–287

    Article  CAS  Google Scholar 

  20. Miyoshi E, Takaya T, Nishinari (1996) Carbohydr Polym 36: 109–120

    Article  Google Scholar 

  21. Miyoshi E (1996) Thesis. Osaka City University

    Google Scholar 

  22. Special Issue (1996) Carbohydr Polym 36: 1

    Google Scholar 

  23. Tanaka Y, Sakurai M, Nakamura (1996) Food Hydrocolloids 10: 133–136

    CAS  Google Scholar 

  24. Hossain KS, Nemoto N, Nishinari (1997) Jpn Soc Rheol 25: 135–142

    CAS  Google Scholar 

  25. Ogawa E (1996) Carbohydr Polym 36: 145

    Article  Google Scholar 

  26. Yuguchi Y, Mimura M, Kitamura S, Urakawa H, Kajiwara (1993) Food Hydrocoll 7: 373–385

    CAS  Google Scholar 

  27. Graessley WW (1974) Adv Polym Sci 16: 1–179

    Article  Google Scholar 

  28. Morris ER (1982) In: Phillips GO, Wedlock DS, Williams PA (eds) Gums and stabilisers for the food industry, vol 2. Pergamon, Oxford, pp 57–78

    Google Scholar 

  29. Clark AH, Ross-Murphy SB (1987) Adv Polym Sci 83: 57–192

    Article  CAS  Google Scholar 

  30. te Nijenhuis (1996) Adv Polym Sci 130: 1–267

    Google Scholar 

  31. Almdal Dyre J, Hvidt S, Kramer O (1993) Polym Gels Networks 1:5–17

    Article  Google Scholar 

  32. Strobl, GR (1996) The Physics of Polymers. Springer, pp 1–439

    Google Scholar 

  33. Winter HH, Chambon F (1986) J Rheol 30: 367–382

    Article  CAS  Google Scholar 

  34. Martin JE, Andolf D, Wilcoxon JP (1989) Phys Rev A 39: 1325–1332

    Article  CAS  Google Scholar 

  35. Lopes de Silva JA, Goncalves MP, Doublier JL, Axelos MAV (1996) Polym Gels Networks 4: 65–83

    Article  Google Scholar 

  36. Nishinari K, Koide S, Onogi (1985) J Phys (Paris) 46: 793–797

    CAS  Google Scholar 

  37. Nishinari K, Miyoshi E, Takaya T, Oakenfull D (1995) Food Technol 9: 90–96

    Google Scholar 

  38. Watase M, Nishinari K, Clark AH, Ross-Murphy SB (1989) Macromole-cules 22: 1196–1201

    Article  CAS  Google Scholar 

  39. Gunning AP, Morris VJ (1990) Int J Biol Macromol 12: 338

    Article  CAS  Google Scholar 

  40. Sime WJ (1990) In: Harris P (ed) Food gels. Elsevier Applied Science, London, pp 53–78

    Google Scholar 

  41. Morris ER, Rees DA, Thorn D, Boyd J (1978) Carbohydr Res 66: 145

    Article  CAS  Google Scholar 

  42. Rolin C, De Vries J (1990) In: Harris P (ed) Food gels. Elsevier Applied Science, London, pp 361–400

    Google Scholar 

  43. Morris ER, Ree DA, Robinson C (1980) J Mol Biol 138: 349

    Article  CAS  Google Scholar 

  44. Smidsrod O, Grasdalen H (1981) Macromolecules 14: 1845

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nishinari .

Editor information

K. Nishinari

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag

About this paper

Cite this paper

Miyoshi, E., Nishinari, K. (1999). Rheological and thermal properties near the sol-gel transition of gellan gum aqueous solutions. In: Nishinari, K. (eds) Physical Chemistry and Industrial Application of Gellan Gum. Progress in Colloid and Polymer Science, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48349-7_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-48349-7_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66389-8

  • Online ISBN: 978-3-540-48349-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics