Skip to main content
Log in

Flow Behavior of Native Corn and Potato Starch Granules in Aqueous Suspensions

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

The flow behavior of native corn and potato starch granule suspensions prepared in a concentrated sucrose solution has been investigated. Measurements were performed using a rotational rheometer with a concentric cylinder geometry. Starch suspensions were dilute to semi-concentrated (1 % to 25 % by volume). Shear and dynamic viscosity were measured by shear flow and dynamic oscillatory testing at 20, 50 and 80 °C. The starch suspensions exhibited essentially Newtonian behavior at all solid contents, although at higher solid volume fractions there was evidence of slight shear thickening. The relative viscosity of suspensions increased with increasing starch granule content, and the data conformed well to Maron-Pierce’s equation. An increase in maximum packing fraction and gravitational depletion of the starch granules with increasing temperature resulted in lower relative viscosities at higher temperatures. Also, the relative viscosities of potato starch granule suspensions with bigger, more oval and anisometric particles were lower than those of corn starch suspensions where granules were closer to sphericity but were angular in shape. Oscillatory shear testing results showed the presence of viscoelastic properties at intermediate solid volume fractions at low frequencies; in addition, the relative shear viscosity was higher than the relative dynamic viscosity, probably due to the formation of shear-induced structures during the shear flow test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Bertolini, in Starches Charact. Prop. Appl., edited by A. Bertolini (CRC Press/Taylor & Francis Group, Boca Raton, FL, 2009)

  2. P. E. Okechukwu, M. A. Rao, J. Texture Stud. 26, 501 (1995)

    Article  Google Scholar 

  3. S. Jobling, Curr. Opin. Plant Biol. 7, 210 (2004)

    Article  CAS  Google Scholar 

  4. S. Y. Yoon, Y. Deng, J. Appl. Polym. Sci. 100, 1032 (2006)

    Article  CAS  Google Scholar 

  5. E. Gregorová, W. Pabst, I. Bohačenko, J. Eur. Ceram. Soc. 26, 1301 (2006)

    Article  Google Scholar 

  6. J. N. BeMiller, Carbohydrate Chemistry for Food Scientists (AACC International, Inc., St. Paul, MN, 2007)

    Google Scholar 

  7. S. Karaman, M. T. Yilmaz, M. Dogan, H. Yetim, A. Kayacier, J. Food Eng. 107, 241 (2011)

    Article  CAS  Google Scholar 

  8. P. G. Smith, Introduction to Food Process Engineering, 2nd edn. (Springer Science & Business Media, New York, NY, 2011)

    Book  Google Scholar 

  9. M. A. Rao, Rheology of Fluid, Semisolid, and Solid Foods: Principles and Applications, 3rd edn. (Springer Science & Business Media, New York, NY, 2013)

    Google Scholar 

  10. H. A. Barnes, A Handbook of Elementary Rheology (institute of non-Newtonian fluid mechanics​, University of Wales, Dyfed, 2000)

  11. P. E. D. Augusto and A. A. Vitali, in Juice Process. Qual. Saf. Value-Added Oppor., edited by V. Falguera and I. Albert (CRC Press/Taylor & Francis Group, Boca Raton, FL, pp. 83–136, 2014)

  12. J. Ahmed, H. S. Ramaswamy, J. Food Sci. Technol. 44, 579 (2007)

    Google Scholar 

  13. H. A. Barnes, J. F. Hutton, K. Walters, An Introduction to Rheology (Elsevier Science, Amsterdam, 1993)

    Google Scholar 

  14. I. M. Krieger, T. J. Dougherty, Trans. Soc. Rheol. 3, 137 (1959)

    Article  CAS  Google Scholar 

  15. D. B. Genovese, Adv. Colloid Interf. Sci. 171172, 1 (2012).

  16. W. Pabst, E. Gregorová, C. Berthold, J. Eur. Ceram. Soc. 26, 149 (2006)

    Article  CAS  Google Scholar 

  17. J. L. Willett, J. Cereal Chem. 78, 64 (2001)

    Article  CAS  Google Scholar 

  18. Z. Zhou, P. J. Scales, D. V. Boger, Chem. Eng. Sci. 56, 2901 (2001)

    Article  CAS  Google Scholar 

  19. S. Mueller, E. W. Llewellin, and H. M. Mader, Proc R. Soc. London A Math. Phys. Eng. Sci. 466, 1201 (2009)

  20. M. D. Rintoul, S. Torquato, J. Chem. Phys. 105, 9258 (1996)

    Article  CAS  Google Scholar 

  21. T. Kitano, T. Kataoka, T. Shirota, Rheol. Acta 20, 207 (1981)

    Article  CAS  Google Scholar 

  22. N. Phan-Thien, D. C. Pham, Int. J. Eng. Sci. 38, 73 (2000)

    Article  Google Scholar 

  23. B. R. Jennings and K. Parslow, Proc R. Soc. London A Math. Phys. Eng. Sci. 419, 137 (1988)

  24. D. Gantenbein, J. Schoelkopf, G. P. Matthews, P. A. C. Gane, Appl. Clay Sci. 53, 538 (2011)

    Article  CAS  Google Scholar 

  25. W. Pabst, C. Berthold, E. Gregorová, J. Eur. Ceram. Soc. 26, 1121 (2006)

    Article  CAS  Google Scholar 

  26. J. Mewis, N. J. Wagner, Colloidal Suspension Rheology (Cambridge University Press, Cambridge, 2012)

    Google Scholar 

  27. K. N. Hna, M. C. Fuerstenau, Principles of Mineral Processing (SME, Littleton, Co, 2003)

    Google Scholar 

  28. M. H. Talou, M. A. Villar, M. A. Camerucci, R. Moreno, J. Eur. Ceram. Soc. 31, 1563 (2011)

    Article  CAS  Google Scholar 

  29. N. C. Crawford, L. B. Popp, K. E. Johns, L. M. Caire, B. N. Peterson, M. W. Liberatore, J. Colloid Interface Sci. 396, 83 (2013)

    Article  CAS  Google Scholar 

  30. D. S. Keller, D. V. Keller Jr., J. Rheol. 35, 1538 (1991)

    Article  Google Scholar 

  31. D. Liu, J. Mater. Sci. 35, 5503 (2000)

    Article  CAS  Google Scholar 

  32. M. M. Bean, W. T. Yamazaki, J. Cereal Chem. 55, 936 (1978)

    Google Scholar 

  33. E. Chiotelli, A. Rolée, M. Le Meste, J. Agric. Food Chem. 48, 1327 (2000)

    Article  CAS  Google Scholar 

  34. A. Gonera and P. Cornillon, Starch/stärke 54, 508 (2002)

  35. K. Kohyama, K. Nishinari, J. Agric. Food Chem. 39, 1406 (1991)

    Article  CAS  Google Scholar 

  36. ICUMSA, 20th Session, Colorado Springs,265–270 (1990) (Quoted in M. Mathlouthi, P. Reiser, Sucrose: Properties and Applications, (Springer Science & Business Media, 1994)).

  37. E. Brown, H. M. Jaeger, J. Rheol. 56, 875 (2012)

    Article  CAS  Google Scholar 

  38. X. Fu, D. Huck, L. Makein, B. Armstrong, U. Willen, T. Freeman, Particuology 10, 203 (2012)

    Article  CAS  Google Scholar 

  39. E. Gregorová, W. Pabst, J. B. Bouchet, Acta Geodyn. Geomater. 6, 101 (2009)

    Google Scholar 

  40. G. Skripkiunas, M. Daukšys, A. Štuopys, R. Levinskas, Mater. Sci. 11, 150 (2005)

    Google Scholar 

  41. S. M. Peker and S. S. Helvaci, Solid-Liquid Two Phase Flow (Elsevier, Amsterdam, 2011)

  42. F. Garcia, N. Le Bolay, C. Frances, Powder Technol. 130, 407 (2003)

    Article  CAS  Google Scholar 

  43. R. Pal, AICHE J. 42, 3181 (1996)

    Article  CAS  Google Scholar 

  44. P. K. Senapati, B. K. Mishra, A. Parida, Powder Technol. 197, 1 (2010)

    Article  CAS  Google Scholar 

  45. J. C. Conrad, S. R. Ferreira, J. Yoshikawa, R. F. Shepherd, B. Y. Ahn, J. A. Lewis, Curr. Opin. Colloid Interface Sci. 16, 71 (2011)

    Article  CAS  Google Scholar 

  46. M. C. Bourne, Food Texture and Viscosity: Concepts and Measurements, 2nd edn. (Academic Press, New York, NY, 2002)

  47. N. Grizzuti, P. Moldenaers, M. Mortier, J. Mewis, Rheol. Acta 32, 218 (1993)

    Article  CAS  Google Scholar 

  48. M. Valdes, O. Manero, J. F. A. Soltero, J. E. Plug, J. Colloid Interface Sci. 160, 59 (1993)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support provided by the Discovery grants program of the Natural Sciences and Engineering Research Council of Canada and from the Faculty of Graduate Studies of the University of Manitoba. The authors are also grateful for constructive comments from anonymous reviewers that have helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin G. Scanlon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinaki, N.Y., Scanlon, M.G. Flow Behavior of Native Corn and Potato Starch Granules in Aqueous Suspensions. Food Biophysics 11, 345–353 (2016). https://doi.org/10.1007/s11483-016-9448-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-016-9448-1

Keywords

Navigation