Skip to main content
Log in

Interactions Between the Lipid Core and the Phospholipid Interface in Emulsions and Solid Lipid Nanoparticles

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

This study evaluates interactions between the lipid core and the phospholipid interface in oil in water emulsions and solid lipid nanoparticles. Interactions between the core and the interface are characterized based on changes in structural order and lateral mobility of the phospholipid interface as a function of physical state of the lipid core (solid vs. liquid) and composition of phospholipids and bile salts at the interface. Changes in structural order of the lipid core are also evaluated as a function of composition of the interface. Emulsions (liquid core) and solid lipid nanoparticles (solid core) are formulated using an eicosane lipid core. Phospholipid with long carbon chain (C16)-high melting phospholipids (41 °C) and short carbon chain (C12)-low melting phospholipid (−1 °C) are selected as emulsifiers. The results of fluorescence anisotropy measurements show that physical state of the lipid core does not significantly influence molecular order of the phospholipid interface. These measurements also demonstrate that molecular order of the lipid core is only marginally impacted by composition of the interface. Excimer formation measurements with pyrene labeled phospholipids illustrate that the composition of phospholipid and bile salts has a significant impact on lateral mobility of emulsifiers at the interface. Results also show that physical state of the lipid core has no significant influence on lateral mobility of emulsifiers at the interface. In summary, these results highlight that properties of phospholipid emulsion interface are a strong function of composition of emulsifiers and co-emulsifiers and are independent of physical state of the lipid core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R.H. Mueller, M. Radtke, S.A. Wissing, Adv. Drug Deliv. Rev. 54(Suppl. 1), S131–S155 (2002)

    Article  Google Scholar 

  2. S.S. Feng, G.F. Huang, J. Control Release 71(1), 53–69 (2001)

    Article  CAS  Google Scholar 

  3. H. Saito, K. Nishiwaki, T. Handa, S. Ito, K. Miyajima, Langmuir 11(10), 3742–3747 (1995)

    Article  CAS  Google Scholar 

  4. M. Tanaka, H. Saito, I. Arimoto, M. Nakano, T. Handa, Langmuir 19(13), 5192–5196 (2003)

    Article  CAS  Google Scholar 

  5. L. Yang, P. Alexandridis, Curr. Opin. Colloid Interface Sci. 5(1–2), 132–143 (2000)

    Article  CAS  Google Scholar 

  6. C.J.H. Porter, N.L. Trevaskis, W.N. Charman, Nat. Rev. Drug Discov. 6(3), 231–248 (2007)

    Article  CAS  Google Scholar 

  7. H. Bunjes, M.H.J. Koch, K. Westesen, J. Pharm. Sci. 92(7), 1509–1520 (2003)

    Article  CAS  Google Scholar 

  8. H. Bunjes, F. Steiniger, W. Richter, Langmuir 23(7), 4005–4011 (2007)

    Article  CAS  Google Scholar 

  9. T. Awad, K. Sato, T. Awad, K. Sato, Colloids Surf., B 25(1), 45–53 (2002)

    Article  CAS  Google Scholar 

  10. T. Helgason, T. Awad, K. Kristbergsson, D. McClements, J. Weiss, J. Colloid Interface Sci. 334(1), 75–81 (2009)

    Article  CAS  Google Scholar 

  11. M.L. Wagner, L.K. Tamm, Biophys. J. 79(3), 1400–1414 (2000)

    Article  CAS  Google Scholar 

  12. M. Tanaka, E. Sackmann, Nature 437(7059), 656–663 (2005)

    Article  CAS  Google Scholar 

  13. R.V. Tikekar, N. Nitin, Soft Matter 7(18), 8149–8157 (2011)

    Article  CAS  Google Scholar 

  14. A. Blume, Biochim. Biophys. Acta 557(1), 32–44 (1979)

    Article  CAS  Google Scholar 

  15. F. Jähnig, Proc. Natl. Acad. Sci. U. S. A. 76(12), 6361 (1979)

    Article  Google Scholar 

  16. W.J. Vanblitterswijk, R.P. Vanhoeven, B.W. Vandermeer, Biochim. Biophys. Acta 644(2), 323–332 (1981)

    Article  CAS  Google Scholar 

  17. B.R. Lentz, Y. Barenholz, T. Thompson, Biochemistry 15(20), 4521–4528 (1976)

    Article  CAS  Google Scholar 

  18. H.J. Galla, E. Sackmann, Biochim. Biophys. Acta 339(1), 103–115 (1974)

    Article  CAS  Google Scholar 

  19. S. Mabrey, J.M. Sturtevant, Proc. Natl. Acad. Sci. U. S. A. 73(11), 3862–3866 (1976)

    Article  CAS  Google Scholar 

  20. S. Reis, C.G. Moutinho, C. Matos, B. de Castro, P. Gameiro, J. Lima, Anal. Biochem. 334(1), 117–126 (2004)

    Article  CAS  Google Scholar 

  21. M. Wickham, M. Garrood, J. Leney, P.D.G. Wilson, A. Fillery-Travis, J. Lipid Res. 39(3), 623–632 (1998)

    CAS  Google Scholar 

  22. A.J. Fillerytravis, L.H. Foster, M.M. Robins, Biophys. Chem. 54(3), 253–260 (1995)

    Article  CAS  Google Scholar 

  23. J.V.L. Henry, P.J. Fryer, W.J. Frith, I.T. Norton, Food Hydrocoll. 24(1), 66–71 (2010)

    Article  CAS  Google Scholar 

  24. Z.J. Huang, W.M. You, I.D. Johnson, S. Wells, R.P. Haugland, FASEB J. 6(1), A501–A501 (1992)

    Google Scholar 

  25. Z.J. Huang, R.P. Haugland, Biochem. Biophys. Res. Commun. 181(1), 166–171 (1991)

    Article  CAS  Google Scholar 

  26. H.J. Galla, J. Luisetti, Biochim. Biophys. Acta 596(1), 108–117 (1980)

    Article  CAS  Google Scholar 

  27. J.M. Holopainen, J.Y.A. Lehtonen, P.K.J. Kinnunen, Chem. Phys. Lipids 88(1), 1–13 (1997)

    Article  CAS  Google Scholar 

  28. C.S. Yoon, J.N. Sherwood, R.A. Pethrick, J. Chem. Soc. Faraday Trans. 1(85), 3221–3232 (1989)

    Article  Google Scholar 

  29. H. Bunjes, M.H.J. Koch, J. Control Release 107(2), 229–243 (2005)

    Article  CAS  Google Scholar 

  30. C. Freitas, R.H. Muller, Eur. J. Pharm. Biopharm. 47(2), 125–132 (1999)

    Article  CAS  Google Scholar 

  31. F. Ishii, T. Nii, Colloids Surf., B 41(4), 257–262 (2005)

    Article  CAS  Google Scholar 

  32. W. Rawicz, K.C. Olbrich, T. McIntosh, D. Needham, E. Evans, Biophys. J. 79(1), 328–339 (2000)

    Article  CAS  Google Scholar 

  33. P.A. Kroon, Biochemistry 33(16), 4879–4884 (1994)

    Article  CAS  Google Scholar 

  34. R.A. Haberkorn, R.G. Griffin, M.D. Meadows, E. Oldfield, J. Am, Chem. Soc. 99(22), 7353–7355 (1977)

    Article  CAS  Google Scholar 

  35. E. Oldfield, M. Meadows, D. Rice, R. Jacobs, Biochemistry 17(14), 2727–2740 (1978)

    Article  CAS  Google Scholar 

  36. G.W. Stockton, I.C.P. Smith, Chem. Phys. Lipids 17(2–3), 251–263 (1976)

    Article  CAS  Google Scholar 

  37. R. Fiorini, E. Gratton, G. Curatola, Biochim. Biophys. Acta 1006(2), 198–202 (1989)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Atul N. Parikh for the use of the fluorescence spectrometer. These research efforts were supported by funding from ACS-PRF (award # 51459-DNI5) and NSF-CAPPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Nitin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bricarello, D.A., Pan, Y. & Nitin, N. Interactions Between the Lipid Core and the Phospholipid Interface in Emulsions and Solid Lipid Nanoparticles. Food Biophysics 10, 466–473 (2015). https://doi.org/10.1007/s11483-015-9413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-015-9413-4

Keywords

Navigation