Skip to main content

Advertisement

Log in

Stimulation of nAchRα7 Receptor Inhibits TNF Synthesis and Secretion in Response to LPS Treatment of Mast Cells by Targeting ERK1/2 and TACE Activation

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The cholinergic anti-inflammatory pathway is recognized as one of the main mechanisms of neuromodulation of the immune system. Activation of the α7 nicotinic acetylcholine receptor (nAchRα7) suppresses cytokine synthesis in distinct immune cells but the molecular mechanisms behind this effect remain to be fully described. Mast cells (MCs) are essential players of allergic reactions and innate immunity responses related to chronic inflammation. Activation of TLR4 receptor in MCs leads to the rapid secretion of pre-synthesized TNF from intracellular pools and to the activation of NFκB, necessary for de novo synthesis of TNF and other cytokines. Here we report that the nAchRα7 receptor specific agonist GTS-21 inhibits TLR4-induced secretion of preformed TNF from MCs in vivo and in vitro. Utilizing bone marrow-derived mast cells (BMMCs) it was found that GTS-21 also diminished secretion of de novo synthesized TNF, TNF mRNA accumulation and IKK-dependent p65-NFκB phosphorylation in response to LPS. nAchRα7 triggering prevented TLR4-induced ERK1/2 phosphorylation, which resulted an essential step for TNF secretion due to the phosphorylation of the metallopeptidase responsible for TNF maturation (TACE). Main inhibitory actions of GTS-21 were prevented by AG490, an inhibitor of JAK-2 kinase. Our results show for the first time, that besides the prevention of NFκB-dependent transcription, inhibitory actions of nAchRα7 triggering include the blockade of pathways leading to exocytosis of granule-stored cytokines in MCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adebanjo OA, Moonga BS, Yamate T, Sun L, Minkin C, Abe E, Zaidi M (1998) Mode of action of interleukin-6 on mature osteoclasts. Novel interactions with extracellular Ca2+ sensing in the regulation of osteoclastic bone resorption. J Cell Biol 142:1347–1356. doi:10.1083/jcb.142.5.1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Acker BA, Jacobsen EJ, Rogers BN, Wishka DG, Reitz SC, Piotrowski DW, Myers JK, Wolfe ML, Groppi VE, Thornburgh VA, Tinholt PM, Walters RR, Olson BA, Fitzgerald L, Staton BA, Raub TJ, Krause M, Li KS, Hoffmann WE, Hajos M, Hurst RS, Walker DP (2008) Discovery of N-[(3R,5R)-1-azabicyclo[3.2.1]oct-3-yl]furo-[2,3-c]pyridine-5-carboxamide as an agonist of the α7 nicotinic acetylcholine receptor: in vitro and in vivo activity. Bioorg Med Chem Lett 18:3611–3615

    Article  CAS  PubMed  Google Scholar 

  • Avila M, Martinez-Juarez A, Ibarra-Sanchez A, Gonzalez-Espinosa C (2012) Lyn kinase controls TLR4-dependent IKK and MAPK activation modulating the activity of TRAF-6/TAK-1 protein complex in mast cells. Innate Immune 18:648–660. doi:10.1177/1753425911435265

    Article  CAS  Google Scholar 

  • Babu GR, Jin W, Norman L, Waterfield M, Chang M, Wu X, Sun SC (2006) Phosphorylation of NF-κB1/p105 by oncoprotein kinase Tpl2: implications for a novel mechanism of Tpl2 regulation. Biochim Biophys Acta 1763:174–181. doi:10.1016/j.bbamcr.2005.10.2.010

    Article  CAS  PubMed  Google Scholar 

  • Beaven MA (2009) Our perception of the mast cell from Paul Ehrlich to now. Eur J Immunol 39:11–25. doi:10.1002/eji.200838899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank U, Madera-Salcedo IK, Danelli L, Claver J, Tiwari N, Sanchez-Miranda E, Gonzalez-Espinosa C (2014) Vesicular trafficking and signaling for cytokine and chemokine secretion in mast cells. Front Immunol 5:1–18. doi:10.3389/fimmu.2014.00453

    Article  CAS  Google Scholar 

  • Borovikova L, Ivanova S, Zhang M, Yang H, Botchkina G, Watkins L, Tracey K (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462. doi:10.1038/35013070

    Article  CAS  PubMed  Google Scholar 

  • Brown JK, Knight PA, Wright SH, Thornton EM, Miller HRP (2003) Constitutive secretion of the granule chymase mouse mast cell protease-1 and the chemokine, CCL2, by mucosal mast cell homologues. Clin Exp Allergy 33:132–141. doi:10.1046/j.1365-2222.2003.01571.x

    Article  CAS  PubMed  Google Scholar 

  • Carmody RJ, Chen YH (2007) Nuclear factor-kappaB: activation and regulation during toll-like receptor signaling. Cell Mol Immunol 4:31–41

    CAS  PubMed  Google Scholar 

  • Charpantier E (2005) α7 neuronal nicotinic acetylcholine receptors are negatively regulated by tyrosine phosphorylation and Src-family kinases. J Neurosci 25:9836–9849. doi:10.1523/JNEUROSCI.3497-05.2005

    Article  CAS  PubMed  Google Scholar 

  • Dajas-Bailador F, Wonnacott S (2004) Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends Pharmacol Sci 25:317–324. doi:10.1016/j.tips.2004.04.006

    Article  CAS  PubMed  Google Scholar 

  • Dani JA (2015) Neuronal nicotinic acetylcholine receptor structure and function and response to nicotine. Int. rev. Neurobio 124:3–19. doi:10.1016/bs.irn.2015.07.001

    Google Scholar 

  • Dasgupta S, Jana M, Zhou Y, Fung YK, Ghosh S, Pahan K (2004) Antineuroinflammatory effect of NF-κB essential modifier-binding domain peptides in the adoptive transfer model of experimental allergic encephalomyelitis. J Immunol 173:1344–1354. doi:10.4049/jimmunol.173.2.1344

    Article  CAS  PubMed  Google Scholar 

  • de Haan JJ, Hadfoune M, Lubbers T, Hodin C, Lenaerts K, Ito A, Buurman WA (2013) Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex. Am J Physiol Gastrointest Liver Physiol 305:383–391. doi:10.1152/ajpgi.00333.2012

    Article  Google Scholar 

  • Duque GA, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 4:1–10. doi:10.3389/fimmu.2014.00491

    Google Scholar 

  • Echtenacher B, Männel DN, Hültner L (1996) Critical protective role of mast cells in a model of acute septic peritonitis. Nature 381:75–77. doi:10.1038/381075a0

  • Eglite S, Morin JM, Metzger H (2003) Synthesis and secretion of monocyte chemotactic protein-1 stimulated by the high affinity receptor for IgE. J Immunol 170:2680–2687. doi:10.4049/jimmunol.170.5.2680

    Article  CAS  PubMed  Google Scholar 

  • Falvo JV, Tsytsykova AV, Goldfeld AE (2010) Transcriptional control of the TNF gene. Curr Dir Autoimmun 11:27–60. doi:10.1159/000289196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fullerton JN, Gilroy DW (2016) Resolution of inflammation: a new therapeutic frontier. Nat. Rev. Drug Discov 15:551–567. doi:10.1038/nrd.2016.39

    Article  CAS  Google Scholar 

  • Galli SJ, Tsai M (2010) Mast cells in allergy and infection : versatile effector and regulatory cells in innate and adaptive immunity. Eur J Immunol 40:1843–1851. doi:10.1002/eji.201040559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon JR, Galli SJ (1990) Mast cells as a source of both preformed and immunologycally inducible TNF -α/Cachectin. Letters to Nature 346:274–276

    Article  CAS  Google Scholar 

  • Horiuchi K, Kimura T, Miyamoto T, Takaishi H, Okada, Y, Toyama Y, Carl P Blobel (2007) Cutting edge: TNF- α -converting enzyme (TACE/ADAM17) inactivation in mouse myeloid cells prevents lethality from endotoxin shock. J Immunol 179: 2686–2689. doi:10.4049/jimmunol.179.5.2686

  • John ALS, Abraham SN (2013) Innate immunity and its regulation by mast cells innate. J Immunol 190:4458–4463. doi:10.4049/jimmunol.1203420

    Article  Google Scholar 

  • Jones AK, Buckingham SD, Sattelle DB (2010) Proteins interacting with nicotinic acetylcholine receptors: expanding functional and therapeutic horizons. Trends Pharmacol Sci 31:455–462. doi:10.1016/j.tips.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  • de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ, Bennink RJ, Berthoud HR, Uematsu S, Akira S, van den RM W, Boeckxstaens GE (2005) Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 6:844–852. doi:10.1038/ni1229

    Article  PubMed  Google Scholar 

  • Kageyama-Yahara N, Suehiro Y, Yamamoto T, Kadowaki M (2008) IgE-induced degranulation of mucosal mast cells is negatively regulated via nicotinic acetylcholine receptors. Biochem Biophys Res Commun 377:321–325. doi:10.1016/j.bbrc.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  • Kalkman HO, Feuerbach D (2016) Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 73:2511–2530. doi:10.1007/s00018-016-2175-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kox M, van Velzen JF, Pompe JC, Hoedemaekers CW, van der Hoeven JG, Pickkers P (2009) GTS-21 inhibits pro-inflammatory cytokine release independent of the toll-like receptor stimulated via a transcriptional mechanism involving JAK2 activation. Biochem Pharmacol 78:863–872. doi:10.1016/j.bcp.2009.06.096

    Article  CAS  PubMed  Google Scholar 

  • Lopes F, Graepel R, Reyes JL, Wang A, Petri B, McDougall JJ, Sharkey KA, McKay DM (2016) Involvement of mast cells in α7 nicotinic receptor agonist exacerbation of Freund’s complete adjuvant–induced Monoarthritis in mice. Arthritis and Rehumatology 68:542–552. doi:10.1002/ART.39411

    Article  CAS  Google Scholar 

  • Macor JE, Gurley D, Lanthorn T, Loch J, Mack RA, Mullen G, Tran O, Wright N, Gordon JC (2001) The 5-HT3 antagonist Tropisetron (ICS 205-930) is a potent and selective α7 nicotinic receptor partial agonist. Bioorg Med Chem Lett 11:319–321

    Article  CAS  PubMed  Google Scholar 

  • Madera-Salcedo IK, Cruz SL, Gonzalez-Espinosa C (2013) Morphine prevents lipopolysaccharide-induced TNF secretion in mast cells blocking IκB kinase activation and SNAP-23 phosphorylation: correlation with the formation of a β-arrestin/TRAF6 complex. J Immunol 191:3400–3409. doi:10.4049/jimmunol.1202658

    Article  CAS  PubMed  Google Scholar 

  • Malaviya R, Ikeda T, Ross E, Abraham SN (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381:77–80. doi:10.1038/381077a0

  • Martel G, Rousseau S (2014) TPL2 signalling: from toll-like receptors-mediated ERK1/ERK2 activation to cystic fibrosis lung disease. Int J Biochem Cell Biol 52:146–151. doi:10.1016/j.biocel.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  • Medina-Tamayo J, Ibarra-Sánchez A, Padilla-Trejo A, González-Espinosa C (2011) IgE-dependent sensitization increases responsiveness to LPS but does not modify development of endotoxin tolerance in mast cells. Inflamm Res 60:19–27. doi:10.1007/s00011-010-0230-4

    Article  CAS  PubMed  Google Scholar 

  • Mishra NC, Rir-sima-ah J, Boyd RT, Singh SP, Gundavarapu S, Langley RJ, Sopori ML (2010) Nicotine inhibits fc epsilon RI-induced cysteinyl leukotrienes and cytokine production without affecting mast cell degranulation through alpha α7/α9/α10 nicotinic receptors. J Immunol 185:588–596. doi:10.4049/jimmunol.0902227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nigrovic PA, Lee DM (2005) Mast cells in inflammatory arthritis. Arthritis Res Ther 7:1–11. doi:10.1186/ar1446

    Article  CAS  PubMed  Google Scholar 

  • Pavlov VA, Ochani M, Yang L-H, Gallowitsch-Puerta M, Ochani K, Lin X, Al-Abed Y (2007) Selective α7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med 35:139–1144. doi:10.1097/01.CCM.0000259381.56526.96

    Article  Google Scholar 

  • Ping-Chang Y, Peng-Yuan Z, Chang-Sheng W (2004) Lipopolysaccharide activates human mast cells to induce intestinal epithelial barrier dysfunction. The Internet Journal of Gastroenterology 4:1–10

    Google Scholar 

  • Romero-Carbente JC, Guzmán-Mejía F, Cruz SL, López-Rubalcava C, González-Espinosa C (2014) Role of main neuroendocrine pathways activated by swim stress on mast cell-dependent peritoneal TNF production after LPS administration in mice. Inflamm Res 63:757–767. doi:10.1007/s00011-014-0748-y

    Article  CAS  PubMed  Google Scholar 

  • Rosas-Ballina M, Goldstein RS, Gallowitsch-Puerta M, Yang L, Valdés-Ferrer SI, Patel NB, Tracey KJ (2009) The selective α7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol Med 15:195–202. doi:10.2119/molmed.2009.00039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, Tracey KJ (2011) Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334:98–101. doi:10.1126/science.1209985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rousseau S, Papoutsopoulou M, Symons A, Cook D, Lucocq JM, Prescott AR, Cohen P (2008) TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNF-α in LPS-stimulated macrophages. J. Cell Sci 121:149–154. doi:10.1242/jcs.018671

    Article  CAS  Google Scholar 

  • Sandig H, Bulfone-Paus S (2012) TLR signaling in mast cells: common and unique features. Front Immunol 3:1–13. doi:10.3389/fimmu.2012.00185

    Article  Google Scholar 

  • Soond SM, Everson B, Riches DWH, Murphy G (2005) ERK-mediated phosphorylation of Thr735 in TNF-α-converting enzyme and its potential role in TACE protein trafficking. J. Cell Sci 118:2371–2380. doi:10.1242/jcs.02357

    Article  CAS  Google Scholar 

  • Sudheer PS, Hall JE, Donev R, Read G, Rowbottom A, Williams PE (2006) Nicotinic acetylcholine receptors on basophils and mast cells. Anaesthesia 61:1170–1174. doi:10.1111/j.1365-2044.2006.04870.x

  • Sun Y, Li Q, Gui H, Xu D, Yang Y, Su D, Liu X (2013) MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Res 23:1270–1283. doi:10.1038/cr.2013.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki K, Verma IM (2008) Phosphorylation of SNAP-23 by IκB kinase 2 regulates mast cell degranulation. Cell 134:485–495. doi:10.1016/j.cell.2008.05.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swope SL, Huganir RL (1994) Binding of the nicotinic acetylcholine receptor to SH2 domains of Fyn and Fyk protein tyrosine kinases. J Biol Chem 269:29817–29824

    CAS  PubMed  Google Scholar 

  • Teshima R, Onose J, Okunuki H, Sawada J (2000) Effect of ca (2+) ATPase inhibitors on MCP-1 release from bone marrow-derived mast cells and the involvement of p38 MAP kinase activation. Int Arch Allergy Immunol 121:34–43. doi:10.1159/000024295

    Article  CAS  PubMed  Google Scholar 

  • Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B, Kalogeromitros D (2012) Mast cells and inflammation. Biochim Biophys Acta 1822:21–33. doi:10.1016/j.bbadis.2010.12.014

    Article  CAS  PubMed  Google Scholar 

  • Thomsen MS, Mikkelsen JD (2012) The α7 nicotinic acetylcholine receptor ligands methyllycaconitine, NS6740 and GTS-21 reduce lipopolysaccharide-induced TNF-α release from microglia. J Neuroimmunol 251:65–72. doi:10.1016/j.jneuroim.2012.07.006

    Article  CAS  PubMed  Google Scholar 

  • Tracey KJ (2010) Understanding immunity requires more than immunology. Nat Immunol 11:561–564. doi:10.1038/ni0710-561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi NH, Guentzel MN, Rodriguez AR, Yu J-J, Forsthuber TG, Arulanandam BP (2013) Mast cells: multitalented facilitators of protection against bacterial pathogens. Expert Rev Clin Immunol 9:129–138. doi:10.1586/eci.12.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya H, Nakano R, Konno T, Okabayashi K, Narita T, Sugiya H (2015) Activation of MEK/ERK pathways through NF-κB activation is involved in interleukin-1β-induced cyclooxygenease-2 expression in canine dermal fibroblast. Vet Immunolo Immunopathol 168:223–232. doi:10.1016/j.vetimm.2015.10.003

    Article  CAS  Google Scholar 

  • Saglam ASY, Alp E, Elmazoglu Z, Menevse ES (2016) Effect of API-1 and FR180204 on cell proliferation and apoptosis in human DLD-1 and LoVo colorectal cancer cells. Oncol Lett 12:2463–2474. doi:10.3892/ol.2016.4995

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu J, Liu Q, Tang P, Mikkelsen JD, Shen J, Whiteaker P, Yakel JL (2016) Heteromeric α7β2 nicotinic acetylcholine receptors in the brain. Trends Pharmacol Sci 37:562–574. doi:10.1016/j.tips.2016.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa H, Kurokawa M, Ozaki N, Nara K, Atou K, Takada E, Suzuki N (2006) Nicotine inhibits the production of proinflammatory mediators in human monocytes by suppression of I-ĸB phosphorylation and nuclear factor-ĸB transcriptional activity through nicotinic acetylcholine receptor α7. J Clin Exp Immunol 146:116–123. doi:10.1111/j.1365-2249.2006.03169.x

    Article  CAS  Google Scholar 

  • Yue Y, Liu R, Cheng W, Hu Y, Li J, Pan X, Zhang P (2015) GTS-21 attenuates lipopolysaccharide-induced inflammatory cytokine production in vitro by modulating the Akt and NF-κB signaling pathway through the α7 nicotinic acetylcholine receptor. Int Immunopharmacol 29:504–512. doi:10.1016/j.intimp.2015.10.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Conacyt-ANR 188565 and Conacyt 1122 Grants to CGE. Grant Conacyt 155255 to CLR. FGM received a scholarship from Conacyt 243361. FGM performed all the experiments. CGE and CLR contributed to study design and analysis of the data. Authors want to thank Alfredo Ibarra Sánchez for generation of BMMCs and technical assistance in different assays, Iván Galván Mendoza for confocal microscopy assistance. We also thank Dr. Jorge Fernández Hernández, Ma. Antonieta López López, Ricardo Gaxiola Centeno, Víctor Manuel García Gómez, Benjamín E. Chávez Álvarez, Juan R. Martínez Parente Ricaud and Ramón Gómez Martínez for their assistance in maintaining the colonies of mice (Unit the Production and Experimental of Laboratory Animals (UPEAL, Cinvestav).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. González-Espinosa.

Ethics declarations

Conflict of Interest

All authors declare that there are no conflicts of interest

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Mejía, F., López-Rubalcava, C. & González-Espinosa, C. Stimulation of nAchRα7 Receptor Inhibits TNF Synthesis and Secretion in Response to LPS Treatment of Mast Cells by Targeting ERK1/2 and TACE Activation. J Neuroimmune Pharmacol 13, 39–52 (2018). https://doi.org/10.1007/s11481-017-9760-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-017-9760-7

Keywords

Navigation