Skip to main content
Log in

Ring Gap Resonance Modes on Disk/Film Coupling System Caused by Strong Plasmon Interaction

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Ring modes with large wave vectors cannot be easily excited on a single disk by the plane wave illumination with the polarization parallel to the disk interface. In this work, we show that special antisymmetric ring gap modes on the surface of the disk in close proximity to the metallic thin film can be excited in the visible light region of the electromagnetic spectrum. In the presence of the film, the strong plasmon interaction between disk and film causes ring gap modes to have lower energies and be more easily excited. We apply the plasmon hybridization method to illustrate the ring gap modes arising from the interaction between the localized disk plasmons and the continuum surface plasmons. The calculated hybridization data show good agreement with the results of finite element simulations. The excitation of ring gap modes provides further insight into the strong coupling of plasmons and the design of novel nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

The data and material that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes generated during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang S,  Wei H, Bao K, Hakanson U, Halas NJ, Nordlander P,  Xu H (2011) Chiral surface plasmon polaritons on metallic nanowires. Phys Rev Lett 107:096801

  2. Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2007) Strong coupling of single emitters to surface plasmons. Phys Rev B 76:035420

  3. Fang YR, Li ZP, Huang YZ, Zhang SP, Nordlander P, Halas NJ, Xu HX (2010) Branched silver nanowires as controllable plasmon routers. Nano Lett 10:1950–1954

    Article  CAS  Google Scholar 

  4. Hao F, Nordlander P (2006) Plasmonic coupling between a metallic nanosphere and a thin metallic wire. Appl Phys 89:103101

  5. Iranzo DA, Nanot S, Dias EJC, Epstein I, Peng C, Efetov DK, Mark Lundeberg B, Parret R, Osmond J, Hong JY, Kong J, Englund DR, Peres NMR, Koppens FHL (2018) Probing the ultimate plasmon confinement limits with a van der Waals heterostructure, Science 360, 291–295

  6. Zengin G, Wersall M, Nilsson S, Antosiewicz TJ, Kall M, Shegai T (2015) Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Appl Phys Lett 114:157401

  7. Fang YR, nordlander P, Xu H (2009) Remote-excitation surface-enhanced Raman scattering using propagating Ag nanowire plasmons. Nano Lett 9, 2049–2053 

  8. Lassiter JB, McGuire F, Mock JJ, Ciraci C, Hill RT, Wiley BJ, Chilkoti A, Smith DR (2013) Plasmonic waveguide modes of film-coupled metallic nanocubes. Nano Lett 13:5866–5872

    Article  CAS  Google Scholar 

  9. Yu B, Woo J, Kong M, O’Carroll DM (2015) Mode-specific study of nanoparticle-mediated optical interactions in an absorber/metal thin film system. Nanoscale 7:13196–13206

    Article  CAS  Google Scholar 

  10. Li G-C, Zhang Q, Maier SA, Lei D (2018) Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry. Nanophotonics 7:1865–1889

    Article  CAS  Google Scholar 

  11. Gerislioglu B, Dong L, Ahmadivand A, Hu H, Nordlander P, Halas NJ (2020) Monolithic metal dimer-on-film structure: new plasmonic properties introduced by the underlying metal. Nano Lett 20:2087–2093

    Article  CAS  Google Scholar 

  12. Schmidt FP, Ditlbacher H, Hofer F, Krenn JR, Hohenester U (2014) Morphing a plasmonic nanodisk into a nanotriangle. Nano Lett 14:4810–4815

    Article  CAS  Google Scholar 

  13. Schmidt FP, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR (2012) Dark plasmonic breathing modes in silver nanodisks. Nano Lett 12:5780–5783

    Article  CAS  Google Scholar 

  14. Yang Y, Hobbs RG, Keathley PD, Berggren KK (2020) Electron energy loss of ultraviolet plasmonic modes in aluminum nanodisks. Opt Express 28:27405–27414

    Article  CAS  Google Scholar 

  15. Schaffernak G, Krug MK, Belitsch M, Gasparic M, Ditlbacher H, Hohenester U, Krenn JR, Hohenau A (2018) Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks. ACS Photonics 5:4823–4827

    Article  CAS  Google Scholar 

  16. Le F, Nordlander P (2005) Plasmons in the metallic nanoparticle−film system as a tunable impurity problem. Nano Lett 5:2009–2013

    Article  CAS  Google Scholar 

  17. Nordlander P, Le F (2006) Plasmonic structure and electromagnetic field enhancements in the metallic nanoparticle-film system. Appl Phys B 84:35–41

    Article  CAS  Google Scholar 

  18. Hao Z, Gao Y, Huang Z, Liang X ( 2017) Polarization-independent magneto-electric Fano resonance in hybrid ring/disk hetero-cavity, Journal of Optics 19 

  19. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444–5454

    Article  CAS  Google Scholar 

  20. Prodan E, Nordlander P (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett 4:2209–2213

    Article  Google Scholar 

  21. Prodan E, Radloff C, Halas NJ, Nordlander P (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302:419

    Article  CAS  Google Scholar 

  22. Boardman AD, Electromagnetic surface modes, (Wiley, 1982), pp. 119–126

  23. Sernelius BE, Surface modes in physics, (WILEY-VCH, 2001), pp. 271–276

  24. Fang Y, Huang Y (2013) Electromagnetic field redistribution in hybridized plasmonic particle-film system. Appl Phys Lett 103:153108 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (Grant Nos. 12074054, 11704058) and the Fundamental Research Funds for the Central Universities (Grant No. DUT21LK06).

Author information

Authors and Affiliations

Authors

Contributions

Y. F. conceived the idea and supervised the work. G. Z. deducted the hybridization thoery and finished the calculations with MATLAB code. L. Q. did the FEM simulations. Y. G. did part of the simulations and plotted part of the figures. G. Z and L. Q wrote the manuscript. All of the authors revised the paper.

Corresponding author

Correspondence to Yurui Fang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, G., Qv, L., Guo, Y. et al. Ring Gap Resonance Modes on Disk/Film Coupling System Caused by Strong Plasmon Interaction. Plasmonics 17, 87–93 (2022). https://doi.org/10.1007/s11468-021-01491-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01491-w

Keywords

Navigation