Skip to main content
Log in

High-Performance Water-Based Metamaterial Wave Absorber Based on Ku Band

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Traditional absorbing materials have certain limitations in coping with complex electromagnetic environments. As an area of significant concern in research, water-based metamaterial absorbers are expected to become one of the essential solutions to the current electromagnetic wave pollution problem. This paper uses rubber and a multi-layer water structure to design a metamaterial with high-performance absorption. The simulation results demonstrate that the proposed water-based metamaterials are able to achieve 90% absorption in the frequency band from 11.17 to 25.16 GHz. Specifically, the Ku band’s average absorption rate reaches as high as 99.34%. The absorption characteristics of the water-based metamaterials include polarization insensitivity and wide-angle incidence in both TE and TM modes. Moreover, broadband absorption is achieved even at a large incident angle of the TM mode. The electric and magnetic field distributions indicate that the exceptional absorption of the water-based metamaterial relies primarily on the magnetic resonance generated by the multi-layer water structure. The proposed metamaterial is utilized for multiple-band signal shielding, effectively addressing communication signal interference and electromagnetic leakage from electronic equipment, and safeguarding against electromagnetic interference in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Due to the large size of the data, the datasets obtained and analyzed during this study are not publicly available, but the relevant design source files are available upon reasonable request to the corresponding author.

References

  1. Xu W, Xie L, Ying Y (2017) Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale 9(37):13864–13878. https://doi.org/10.1039/C7NR03824K

    Article  CAS  PubMed  Google Scholar 

  2. Tantiwanichapan K, Durmaz H (2021) Herbicide/pesticide sensing with metamaterial absorber in THz regime. Sens Actuators A 331:112960. https://doi.org/10.1016/j.sna.2021.112960

    Article  CAS  Google Scholar 

  3. Nguyen T, Cao T, Nguyen N, Tuyen L, Bui X, Truong C, Vu D, Nguyen T (2021) Simple design of a wideband and wide-angle insensitive metamaterial absorber using lumped resistors for X- and Ku-bands. IEEE Photonics J 13(3):1–10. https://doi.org/10.1109/JPHOT.2021.3085320

    Article  Google Scholar 

  4. Zhang X, Yan F, Du X, Wang W, Zhang M (2020) Broadband water-based metamaterial absorber with wide angle and thermal stability. AIP Adv 10(5):055211. https://doi.org/10.1063/5.0006166

    Article  CAS  Google Scholar 

  5. Jain P, Singh A, Pandey J, Bansal S, Sardana N, Kumar S, Gupta N, Singh A (2021) An ultrathin compact polarization-sensitive triple-band microwave metamaterial absorber. J Electron Mater 50(3):1506–1513. https://doi.org/10.1007/s11664-020-08680-z

    Article  CAS  Google Scholar 

  6. Li J, Bao L, Jiang S, Guo Q, Xu D, Xiong B, Zhang G, Yi F (2019) Inverse design of multifunctional plasmonic metamaterial absorbers for infrared polarimetric imaging. Opt Express 27(6):8375–8386. https://doi.org/10.1364/OE.27.008375

    Article  CAS  PubMed  Google Scholar 

  7. Chen T, Zhang D, Huang F, Li Z, Hu F (2020) Design of a terahertz metamaterial sensor based on split ring resonator nested square ring resonator. Mater Res Express 7(9):123. https://doi.org/10.1088/2053-1591/abb496

    Article  CAS  Google Scholar 

  8. Kannaiyan V, Sadhasivam K (2022) Miniaturized five-band perfect metamaterial thz absorber with small frequency ratio. Plasmonics 17(1):79–86. https://doi.org/10.1007/s11468-021-01500-y

    Article  CAS  Google Scholar 

  9. Kim Y, Yoo Y, Hwang J, Lee Y (2017) Ultra-broadband microwave metamaterial absorber based on resistive sheets. J Opt 19(1):015103. https://doi.org/10.1088/2040-8986/19/1/015103

    Article  CAS  Google Scholar 

  10. Duan G, Schalch J, Zhao X, Zhang J, Averitt RD, Zhang X (2018) Analysis of the thickness dependence of metamaterial absorbers at terahertz frequencies. Optics Express 26(3):2242–2251. https://doi.org/10.1364/OE.26.002242

    Article  CAS  PubMed  Google Scholar 

  11. Huang S, Xie Z, Chen W, Lei J, Wang F, Liu K, Li L (2018) Metasurface with multi-sized structure for multi-band coherent perfect absorption. Optics Express 26(6):7066–7078. https://doi.org/10.1364/OE.26.007066

    Article  CAS  PubMed  Google Scholar 

  12. Hu F, Wang L, Quan B, Xu X, Li Z, Wu Z, Pan X (2013) Design of a polarization insensitive multiband terahertz metamaterial absorber. J Phys D Appl Phys 46(19):195103. https://doi.org/10.1088/0022-3727/46/19/195103

    Article  CAS  Google Scholar 

  13. Mulla B, Sabah C (2017) Multi-band metamaterial absorber topology for infrared frequency regime. Physica E 86:44–51. https://doi.org/10.1016/j.physe.2016.10.003

    Article  CAS  Google Scholar 

  14. Zhang H, Ling F, Zhang B (2021) Broadband tunable terahertz metamaterial absorber based on vanadium dioxide and fabry-perot cavity. Opt Mater 112:110803. https://doi.org/10.1016/j.optmat.2021.110803

    Article  CAS  Google Scholar 

  15. Montoya J, Tian Z, Krishna S, Padilla WJ (2017) Ultra-thin infrared metamaterial detector for multicolor imaging applications. Opt Express 25(19):23343–23355. https://doi.org/10.1364/OE.25.023343

    Article  CAS  PubMed  Google Scholar 

  16. Bilal RMH, Baqir MA, Choudhury PK, Karaaslan M, Ali MM et al (2021) Wideband microwave absorber comprising metallic split-ring resonators surrounded with E-shaped fractal metamaterial. IEEE Access 9:5670–5677. https://doi.org/10.1109/ACCESS.2020.3048927

    Article  Google Scholar 

  17. Hasan Bilal RM, Baqir A, Choudhury P, Ali MM, Abdur Rahim A, Kamal W (2020) Polarization-insensitive multi-band metamaterial absorber operating in the 5G spectrum. Optik International Journal for Light and Electron Optics. https://doi.org/10.1016/j.ijleo.2020.164958

    Article  Google Scholar 

  18. Bilal RMH, Baqir MA, Iftikhar A, Naqvi SA, Mughal MJ, Ali MM (2022) Polarization-controllable and angle-insensitive multiband yagi-uda-shaped metamaterial absorber in the microwave regime. Opt Mater Express 12(2):798–810. https://doi.org/10.1364/OME.451073

    Article  CAS  Google Scholar 

  19. Takatori K, Okamoto T, Ishibashi K (2018) Surface-plasmon-induced ultra-broadband light absorber operating in the visible to infrared range. Opt Express 26(2):1342–1350. https://doi.org/10.1364/OE.26.001342

    Article  CAS  PubMed  Google Scholar 

  20. Wu S, Luo T, Xiong G (2021) Plasmon hybridization-induced ultra-broadband high absorption from 0.4 to 1.8 microns in titanium nitride metastructures. Plasmonics 16(3):799–809. https://doi.org/10.1007/s11468-020-01324-2

    Article  CAS  Google Scholar 

  21. Shen Z, Huang X, Zhang Q, Yang H (2022) Ultra-broadband and high-efficiency polarization conversion metamaterial based on a metal combination water structure. Opt Express 30(21):38764–38775. https://doi.org/10.1364/OE.474173

    Article  CAS  PubMed  Google Scholar 

  22. Shen Z, Huang X, Yang H, Xiang T, Wang C, Yu Z, Wu J (2018) An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water. J Appl Phys 123(22):225106. https://doi.org/10.1063/1.5024319

    Article  CAS  Google Scholar 

  23. Xiong H, Yang F (2020) Ultra-broadband and tunable saline water-based absorber in microwave regime. Optics Express 28(4):5306–5316. https://doi.org/10.1364/OE.382719

    Article  PubMed  Google Scholar 

  24. Ali W, Iqbal S, Ullah M, Wang X (2022) An ultrahigh narrowband absorber close to the information communication window. Plasmonics 17(2):709–715. https://doi.org/10.1007/s11468-021-01557-9

    Article  Google Scholar 

  25. Yoo Y, Ju S, Park S, Ju K, Bong J (2015) Metamaterial absorber for electromagnetic waves in periodic water droplets. Sci Rep 5(1):14018. https://doi.org/10.1038/srep14018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xie J, Zhu W, Rukhlenko ID, Xiao F, He C (2018) Water metamaterial for ultra-broadband and wide-angle absorption. Opt Express 26(4):5052–5059. https://doi.org/10.1364/OE.26.005052

    Article  CAS  PubMed  Google Scholar 

  27. Huang X, Yang H, Shen Z, Chen J, Lin H, Yu Z (2017) Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime. J Phys D Appl Phys 50(38):385304. https://doi.org/10.1088/1361-6463/aa81af

    Article  CAS  Google Scholar 

  28. Zhang C, Yang J, Cao W, Yuan W, Ke J, Yang L, Cheng Q, Cui T (2019) Transparently curved metamaterial with broadband millimeter wave absorption. Photonics Res 7(4):478–485. https://doi.org/10.1364/PRJ.7.000478

    Article  Google Scholar 

  29. Zhang H, Ling F, Wang H, Zhang Y, Zhang B (2020) A water hybrid graphene metamaterial absorber with broadband absorption. Opt Commun 463:125394. https://doi.org/10.1016/j.optcom.2020.125394

    Article  CAS  Google Scholar 

  30. Kang Y, Wang J, Liu H (2022) A dual-band polarization insensitive metamaterial absorber with a single square metallic patch for sensing application. Plasmonics 17(2):449–456. https://doi.org/10.1007/s11468-021-01537-z

    Article  CAS  Google Scholar 

  31. Ma Y, Jiang Y, Qian J, Wang C, Kang S, Chen G, Zhong B (2023) Facile fabrication of co-mof/gns derivatives as electromagnetic wave absorber with thin thickness for X and Ku bands. Ceram Int 49(11, Part B):18745–18755. https://doi.org/10.1016/j.ceramint.2023.02.253

    Article  CAS  Google Scholar 

  32. Song Q, Zhang W, Wu PC, Zhu W, Shen ZX et al (2017) Water-resonator-based metasurface: an ultrabroadband and near-unity absorption. Adv Opt Mater 5(8):1601103. https://doi.org/10.1002/adom.201601103

    Article  CAS  Google Scholar 

  33. Li S, Shen Z, Yang H, Liu Y, Yang Y, Hua L (2021) Ultra-wideband transmissive water-based metamaterial absorber with wide angle incidence and polarization insensitivity. Plasmonics 16(4):1269–1275. https://doi.org/10.1007/s11468-021-01389-7

    Article  CAS  Google Scholar 

  34. Zhou Q, Xue B, Gu S, Ye F, Fan X, Duan W (2022) Ultra broadband electromagnetic wave absorbing and scattering properties of flexible sandwich cylindrical water-based metamaterials. Results Phys 38:105587. https://doi.org/10.1016/j.rinp.2022.105587

    Article  Google Scholar 

  35. Zhang J, Wu X, Liu L, Huang C, Chen X et al (2019) Ultra-broadband microwave metamaterial absorber with tetramethylurea inclusion. Optics Express 27(18):25595–25602

    Article  CAS  PubMed  Google Scholar 

  36. Zhou Y, Shen Z, Huang X, Wu J, Li Y, Huang S, Yang H (2019) Ultra-wideband water-based metamaterial absorber with temperature insensitivity. Phys Lett A 383(23):2739–2743. https://doi.org/10.1016/j.physleta.2019.05.050

  37. Xie J, Quader S, Xiao F, He C, Liang X et al (2019) Truly all-dielectric ultrabroadband metamaterial absorber: water-based and ground-free. IEEE Antennas Wirel Propag Lett 18(3):536–540. https://doi.org/10.1109/LAWP.2019.2896166

    Article  Google Scholar 

  38. Shen Z, Huang X, Yang H, Xiang T, Wang C, Yu Z, Wu J (2018) An ultra-wideband, polarization insensitive, and wide incident angle absorber based on an irregular metamaterial structure with layers of water. J Appl Phys 123(22):225106. https://doi.org/10.1063/1.5024319

    Article  CAS  Google Scholar 

Download references

Funding

This was supported by the Hubei Province Natural Science Foundation youth project (No. 2023AFB019) and the Key Research and Development Program of the Hubei Province (2023BAB052).

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the conception and design of the study, as well as the writing and revision of the manuscript. Model preparation and simulation data collection were done by Xiangbo Luo, and model optimization was done under the guidance of Jing Zhang and Zhaoyang Shen. The visualization and analysis of the experimental data was done by Bohan Cao. The first draft of the manuscript was co-authored by Xiangbo Luo and Bohan Cao, and all authors commented on the previous version of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhaoyang Shen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Cao, B., Zhang, J. et al. High-Performance Water-Based Metamaterial Wave Absorber Based on Ku Band. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02289-2

Keywords

Navigation