Skip to main content

Basic Principles of Surface Plasmon Resonance

  • Chapter
  • First Online:
Computational Photonic Sensors

Abstract

In this chapter, the basic concept concerning the surface plasmon phenomena is presented. Different types of surface plasmon wave (localized and propagating) are reviewed. Moreover, the thin metallic film surface plasmon waveguide is analyzed in order to show the symmetric and asymmetric modes. Finally, other types of surface plasmon waveguides are discussed to show the trade-off between the confinement of the field profile and the attenuation loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Economou, Surface plasmons in thin films. Phys. Rev. 182(2), 539–554 (1969)

    Article  Google Scholar 

  2. A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)

    Article  Google Scholar 

  3. M.F.O. Hameed, R.T. Balat, A.M. Heikal, M.M. Abo-Elkhier, M.I. Abo el Maaty, S.S.A. Obayya, Polarization-independent surface plasmon liquid crystal photonic crystal multiplexer demultiplexer. IEEE Photon. J. 7(5), 1–10 (2015)

    Article  Google Scholar 

  4. B.M. Younis, A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Coupling enhancement of plasmonic liquid photonic crystal fiber. Plasmonics 12(5), 1529–1535 (2016)

    Article  Google Scholar 

  5. M.F.O. Hameed, Y.K.A. Alrayk, S.S.A. Obayya, Self-calibration highly sensitive photonic crystal fiber biosensor. IEEE Photon. J. 8(3), 1–12 (2016)

    Article  Google Scholar 

  6. M.F.O. Hameed, Y.K.A. Alrayk, A.A. Shaalan, W.S. El Deeb, S.S.A. Obayya, Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. J. Nanophoton. 10(4), 046016 (2016)

    Article  Google Scholar 

  7. A.M. Heikal, F.F.K. Hussain, M.F.O. Hameed, S.S.A. Obayya, Efficient polarization filter design based on plasmonic photonic crystal fiber. J. Lightwave Technol. 33(13), 2868–2875 (2015)

    Article  Google Scholar 

  8. S.I. Azzam, M.F.O. Hameed, R.E.A. Shehata, A.M. Heikal, S.S.A. Obayya, Multichannel photonic crystal fiber surface plasmon resonance based sensor, Optic. Quant. Electron. 48(2) (2016)

    Google Scholar 

  9. F.F.K. Hussain, A.M. Heikal, M.F.O. Hameed, J. El-Azab, W.S. Abdelaziz, S.S.A. Obayya, Dispersion characteristics of asymmetric channel plasmon polariton waveguides. IEEE J. Quant. Electron. 50(6), 474–482 (2014)

    Article  Google Scholar 

  10. A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Coupling characteristic of a novel hybrid long-range plasmonic waveguide including bends. IEEE J. Quant. Electron. 49(8), 621–627 (2013)

    Article  Google Scholar 

  11. A.M. Heikal, M.F.O. Hameed, S.S.A. Obayya, Improved trenched channel plasmonic waveguide. J. Lightwave Technol. 31(13), 2184–2191 (2013)

    Article  Google Scholar 

  12. S. Maier, Plasmonics: metal nanostructures for subwavelength photonic devices. IEEE J. Sel. Top. Quant. Electron. 12(6), 1214–1220 (2006)

    Article  Google Scholar 

  13. R. Zia, M. Selker, P. Catrysse, M. Brongersma, Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21(12), 2442 (2004)

    Article  Google Scholar 

  14. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett. 22(7), 475 (1997)

    Article  Google Scholar 

  15. T. Koo, S. Chan, A. Berlin, Single-molecule detection of biomolecules by surface-enhanced coherent anti-Stokes Raman scattering. Opt. Lett. 30(9), 1024 (2005)

    Article  Google Scholar 

  16. B. Rothenhäusler, W. Knoll, Surface–plasmon microscopy. Nature 332(6165), 615–617 (1988)

    Article  Google Scholar 

  17. M. Quinten, A. Leitner, J. Krenn, F. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23(17), 1331 (1998)

    Article  Google Scholar 

  18. Z. Liu, Y. Wang, J. Yao, H. Lee, W. Srituravanich, X. Zhang, Broad band two-dimensional manipulation of surface plasmons. Nano Lett. 9(1), 462–466 (2009)

    Article  Google Scholar 

  19. S. Maier, M. Brongersma, P. Kik, S. Meltzer, A. Requicha, H. Atwater, Plasmonics-A route to nanoscale optical devices. Adv. Mater. 13(19), 1501–1505 (2001)

    Article  Google Scholar 

  20. M.H. Muhammad, M.F.O. Hameed, S.S.A. Obayya, Broadband absorption enhancement in periodic structure plasmonic solar cell. Opt. Quant. Electron. 47(6), 1487–1494 (2015)

    Article  Google Scholar 

  21. J. Burke, G. Stegeman, T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films. Phys. Rev. B 33(8), 5186–5201 (1986)

    Article  Google Scholar 

  22. S. Al-Bader, M. Imtaar, Azimuthally uniform surface-plasma modes in thin metallic cylindrical shells. IEEE J. Quant. Electron. 28(2), 525–533 (1992)

    Article  Google Scholar 

  23. S. Al-Bader, M. Imtaar, Optical fiber hybrid-surface plasmon polaritons. J. Opt. Soc. Am. B 10(1), 83 (1993)

    Article  Google Scholar 

  24. P. Berini, Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics. Opt. Express 7(10), 329 (2000)

    Article  Google Scholar 

  25. P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures. Phys. Rev. B, 63(12) (2001)

    Google Scholar 

  26. R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width. Opt. Lett. 25(11), 844 (2000)

    Article  Google Scholar 

  27. A. Degiron, C. Dellagiacoma, J. McIlhargey, G. Shvets, O. Martin, D. Smith, Simulations of hybrid long-range plasmon modes with application to 90° bends. Opt. Lett. 32(16), 2354 (2007)

    Article  Google Scholar 

  28. T. Holmgaard, J. Gosciniak, S. Bozhevolnyi, Long-range dielectric-loaded surface plasmon-polariton waveguides. Opt. Express 18(22), 23009 (2010)

    Article  Google Scholar 

  29. J. Guo, R. Adato, Control of 2D plasmon-polariton mode with dielectric nanolayers. Opt. Express 16(2), 1232 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Farhat O. Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Heikal, A.M., Hameed, M.F.O., Obayya, S.S.A. (2019). Basic Principles of Surface Plasmon Resonance. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76556-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76555-6

  • Online ISBN: 978-3-319-76556-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics