Skip to main content
Log in

Flexible Broadband Solar Plasmonic Absorber Based on Graded Bandgap Multilayer for the Solar Cells Energy Harvesting with High Conversion Efficiency Sensitivity

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Flexible broadband solar plasmonic absorber is studied based on graded bandgap multilayer for the solar cell energy harvesting with high conversion efficiency sensitivity. The suggested solar cell structure ranges from ultraviolet (UV)/visible to near-infrared regions in AM0 solar cell illumination spectrum. OPAL 2 solar cell simulation software is used for this study. The solar cell structure composed of silicon substrate, window layer with aluminum nitride (AlN), transparent oxide layer with aluminum-doped zinc oxide (ZnO:Al), absorber layer with zinc sulfide (ZnS), and the contact layer with the gallium phosphide (GaP). The suggested solar cell reflection/absorption/transmission is clarified with the clarified wavelength spectrum band. The solar cell reflected/absorbed photocurrent is clarified with different surface morphology types. As well as the solar cell internal quantum efficiency (IQE) is also simulated with different surface morphology types. The solar cell power conversion efficiency is clarified with different substrate layer structures, absorber layer structures, and the contact layer structures. The solar cell equivalent circuit model diagram is clarified. The proposed solar cell achieved a max-power voltage (Vmp) of 423.83 mV, a max-power current (Jmp) of 61.487 mA/cm2, an open-circuit voltage (Voc) of 584.35 mV, a short-circuit current (Jsc) of 66.44 mA/cm2, a fill factor (FF) of 67.12%, and a power conversion efficiency of 26.06%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of Data and Materials

Simulation software.

Code Availability

Not applicable.

References

  1. Kadhim RA (2019) Design and simulation of closed loop proportional integral (PI) controlled boost converter and 3-phase inverter for photovoltaic (PV) applications. Al-Khwarizmi Eng J 15(1):10–22

    Article  Google Scholar 

  2. Zalas M, Jelak K (2020) Optimization of platinum precursor concentration for new, fast and simple fabrication method of counter electrode for DSSC application. Optik-International Journal for Light and Electron Optics 206(3):164–175

    Google Scholar 

  3. Ziani N, Belkaid MS (2018) Computer modeling zinc oxide/silicon heterojunction solar cells. J Nano-Electron Phys 10(6):602–613

    Article  Google Scholar 

  4. Gulomov J, Aliev R, Abduvoxidov M, Mirzaalimov A, Mirzaalimov N (2020) Exploring optical properties of solar cells by programming and modeling. Global J Eng Technol Adv 5(1):32–38

    Article  Google Scholar 

  5. Kaifi M, Gupta SK (2019) Simulation of Perovskite based solar cell and photodetector using SCAPS software. Int J Eng Res Technol 12(10):1778–1786

    Google Scholar 

  6. Zapukhlyak ZR, Nykyruy LI, Rubish VM, Wisz G, Prokopiv VV et al (2020) SCAPS simulation of ZnO/CdS/CdTe/CuO heterostructure for photovoltaic application. Phys Chem Solid State 21(4):660–668

    Article  CAS  Google Scholar 

  7. Bin Rafiq MK, Amin N, Alharbi HF, Luqman M, Ayob A, Alharthi YS, Alharth NH, Bais B, Akhtaruzzaman M (2021) “WS2: a new window layer material for solar cell application.” Sci Rep 10(2):771–788

  8. Li ZQ, Ni M, Feng XD (2020) “Simulation of the Sb2Se3 solar cell with a hole transport layer.” Mater Res Express 7(3):416–437

  9. Farooq W, Khan AD, Khan AD, Rauf A, Khan SD et al (2017) Thin-film tandem organic solar cells with improved efficiency. IEEE Access 8(6):74093–74100

    Google Scholar 

  10. Zhou Y, Hernandez CF, Shim JW, Khan TM, Kippelen B (2012) High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environ Sci 5(2):9827–9832

    Article  CAS  Google Scholar 

  11. Liang Z, Zhang Q, Jiang L, Cao G (2015) ZnO cathode buffer layers for inverted polymer solar cells. Energy Environ Sci 8(3):3442–3476

    Article  CAS  Google Scholar 

  12. Pagliaro M, Ciriminna R, Palmisano G (2008) Flexible solar cells. Chemi Sustainability Energy Mat 1(2):880–891

    CAS  Google Scholar 

  13. Tahhan SR, Taha RM (2021) “Mercedes Benz logo based plasmon resonance PCF sensor.” Sens Bio-Sens Res 35(100468):1–9

  14. Li Z, Ni M, Feng XD (2019) Simulation of the Sb2Se3 solar cell with a hole transport layer. Mater. Res Express 7(2):16–32

    Google Scholar 

  15. Benami A (2019) Effect of CZTS parameters on photovoltaic solar cell from numerical simulation. J Energy Power Eng 13(2):32–36

    CAS  Google Scholar 

  16. [Online]. Available: www.pvlighthouse.com.au

  17. Mamta M, Maurya KK, Singh VN (2021) Enhancing the performance of an Sb2Se3-based solar cell by dual buffer layer. Sustainability Journal 13(21):123–133

    Google Scholar 

  18. Amoupour E, Hassnzadeh J, Ziabari AA, Anaraki PA (2021) Numerical simulations of ultrathin CdTe solar cells with a ZnxCd1−xS window layer and a Cu2Ohole transport layer. J Comput Electron 20(4):2501–2510

    Article  CAS  Google Scholar 

  19. Fardi H, Buny F (2013) Characterization and modeling of CdS/CdTe heterojunction thin-film solar cell for high efficiency performance. Int J Photo Energy 6(2):176–188

    Google Scholar 

  20. Matin MA, Amin N, Zaharim A, Sopian K (2010) ”A study towards the possibility of ultra thin CdS/CdTe high efficiency solar cells from numerical analysis.” Wseas Trans Environ 6(8):571–580

  21. Tingliang L, Xulin H, Jingquan Z, Lianghuan F (2012) Effect of ZnO films on CdTe solar cells. J Semicond 33(9):11–120

    Google Scholar 

  22. Aranovich JA, Golmayo D, Fahrenbruch AL, Bube RH (2012) Photovoltaic properties of ZnO/CdTe heterojunctions prepared by spray pyrolysis. J Appl Phys 51(8):4260–4268

    Article  Google Scholar 

  23. Perrenoud J, Kranz L, Buecheler S, Pianezzi F, Tiwari AN (2011) The use of aluminum doped ZnO as transparent conductive oxide for CdS/CdTe solar cells. Thin Solid Films 519(21):7444–7448

    Article  CAS  Google Scholar 

  24. Skhouni O, El Manouni A, Mari B, Ullah H (2016) Numerical study of the influence of ZnTe thickness on CdS/ZnTe solar cell performance. Eur Appl Phys 24602(74):1–6

    Google Scholar 

  25. Han J, Fu G, Krishnakumar V, Liao C, Jaegermann W (2013)“Preparation and characterization of ZnS/CdS bi-layer for CdTe solar cell application.” J Phys Chem Solids 74(12):1879–1883

  26. Green MA, Dunlop ED, Hohl-Ebinger J, Yoshita M, Kopidakis N, Bothe K, Hinken D, Rauer M, Hao X (2022) Solar cell efficiency tables (Version 60). Progress in Photovoltaics: Res Appl J 30(1):687–701. https://doi.org/10.1002/pip.3595

    Article  Google Scholar 

  27. Al-Ezzi AS, Ansari MNM (2022) “Photovoltaic solar cells: a review.” Appl Syst Innov 5(67).  https://doi.org/10.3390/asi5040067

  28. Sharaf M, Yousef MS, Huzayyin AS (2022) Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environ Sci Pollut Res 29(3):26131–26159. https://doi.org/10.1007/s11356-022-18719-9

    Article  Google Scholar 

  29. Sugianto S (2020) “Comparative analysis of solar cell efficiency between monocrystalline and polycrystalline” INTEK J Penelitian 7(2):92–100. https://doi.org/10.31963/intek.v7i2.2625

  30. Furkan D, Mehmet Emin M (2010) “Critical factors that affecting efficiency of solar cells.” Smart Grid Renewable Energy 1:47–50. https://doi.org/10.4236/sgre.2010.11007

  31. Dambhare MV, Butey B, Mohari SV (2021) “Solar photovoltaic technology: a review of different types of solar cells and its future trends” J Phys: Conf Ser 1913:012053. https://doi.org/10.1088/1742-6596/1913/1/012053

  32. Soomar AM, Hakeem A, Messaoudi M, Musznicki P, Iqbal A, Czapp S (2022) “Solar photovoltaic energy optimization and challenges” Front Energy Res 10(879985). https://doi.org/10.3389/fenrg.2022.879985

  33. Manisha, Pinkey, Kumari M, Sahdev RK, Tiwari S (2022) “A review on solar photovoltaic system efficiency improving technologies.” Appl Solar Energy 58(1):54–75. https://doi.org/10.3103/S0003701X22010108

  34. Min Su Kim, Ju Heon Lee, Moon Kyu Kwak (2020) “ Review: surface texturing methods for solar cell efficiency enhancement.” Int J Precis Eng Manuf 21:1389–1398. https://doi.org/10.1007/s12541-020-00337-5

  35. Ali Sulaiman Alsagri (2022) Photovoltaic and photovoltaic thermal technologies for refrigeration purposes: an overview. Arab J Sci Eng 47(3):7911–7944. https://doi.org/10.1007/s13369-021-06534-2

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of this work, from the Deanship of Scientific Research (DSR), University of Tabuk, Tabuk, Saudi Arabia. (grant number: S-1443–0148).

Funding

This research was supported by the Deanship of Scientific Research (DSR), University of Tabuk, Tabuk, Saudi Arabia (S-1443–0148).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Hazem M. El-Hageen, Ahmed Nabih Zaki Rashed, Hani Albalawi; data curation, formal analysis, and investigation, Aadel M. Alatwi, Mohammed A. Alhartomi, Mohamed A. Mead, Yousef Alfaifi, and Hani Albalawi; methodology, Hazem M. El-Hageen, and Ahmed Nabih Zaki Rashed; resources and software, A Aadel M. Alatwi, Mohammed A. Alhartomi, Mohamed A. Mead, and Yousef Alfaifi; supervision and validation, Hazem M. El-Hageen, Ahmed Nabih Zaki Rashed, and Hani Albalawi; visualization and writing—original draft, A Hazem M. El-Hageen, Ahmed Nabih Zaki Rashed, and Hani Albalawi; writing—review editing, Aadel M. Alatwi, Mohammed A. Alhartomi, Mohamed A. Mead, Yousef Alfaifi, and Madhi Tarikham Alsubaie.

Corresponding author

Correspondence to Hazem M. El-Hageen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hageen, H.M., Rashed, A.N.Z., Albalawi, H. et al. Flexible Broadband Solar Plasmonic Absorber Based on Graded Bandgap Multilayer for the Solar Cells Energy Harvesting with High Conversion Efficiency Sensitivity. Plasmonics 19, 885–899 (2024). https://doi.org/10.1007/s11468-023-02031-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02031-4

Keywords

Navigation