Skip to main content

Advertisement

Log in

Polarization-sensitive perfect plasmonic absorber for thin-film solar cell application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A polarization-sensitive perfect plasmonic absorber composed of three functional layers is designed and numerically investigated for harvesting of solar energy. The top layer is composed of plasmonic triangular nanoparticles made of aluminum, the middle layer is made of dielectric, and the bottom layer is composed of thick aluminum foil. The dimensions of the absorber structure are carefully selected to exhibit broadband absorption in the visible region, where the electromagnetic energy is maximum. Several configurations of the top layer containing triangular nanoparticles are analyzed with a special emphasis on broadband absorption. It is found that one of the types of absorber structure absorbs more than 90% of incoming light with large spectral width at various regions in the visible and near-infrared regions. Moreover, the weighted mean values under the AM1.5 solar spectrum are also calculated, and high values are obtained, which shows that the proposed structure is most appropriate for thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.T. Ruck, Radar cross section handbook, vol. 2. (Plenum Publishing Corporation, New York, 1970)

    Book  Google Scholar 

  2. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824 (2003)

    Article  ADS  Google Scholar 

  3. C.-H. Lai et al., Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial. Sci. Rep. 7(1), 5446 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. G. Hashmi, M.H. Imtiaz, S. Rafique, Towards high efficiency solar cells: composite metamaterials. Global J. Res. Eng. 13(10-F), (2013)

  5. Y. Wang et al., Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett. 12(1), 440–445 (2011)

    Article  ADS  Google Scholar 

  6. H. Ullah et al. Plasmonic perfect absorber for solar cell applications. In: Emerging Technologies (ICET), 2016 International Conference. IEEE 1–5 (2016)

  7. L.-Z. Hsieh et al., Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt. Commun. 370, 85–90 (2016)

    Article  ADS  Google Scholar 

  8. N. Liu et al., Infrared perfect absorber and its application as plasmonic sensor. Nano Lett. 10(7), 2342–2348 (2010)

    Article  ADS  Google Scholar 

  9. A.D. Khan, M. Amin, Tunable salisbury screen absorber using square lattice of plasmonic nanodisk. Plasmonics 12(2), 257–262 (2017)

    Article  Google Scholar 

  10. Y.-F.C. Chau et al., Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale Res. Lett. 11(1), 411 (2016)

    Article  ADS  Google Scholar 

  11. C.-T. Lin et al., Rapid fabrication of three-dimensional gold dendritic nanoforests for visible light-enhanced methanol oxidation. Electrochim. Acta 192, 15–21 (2016)

    Article  Google Scholar 

  12. E. Hendry et al., Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5(11), 783 (2010)

    Article  ADS  Google Scholar 

  13. H. Ullah et al., Novel multi-broadband plasmonic absorber based on a metal-dielectric-metal square ring array. Plasmonics. 13(2), 591–597 (2017)

    Article  Google Scholar 

  14. C. Sun et al., A surface design for enhancement of light trapping efficiencies in thin film silicon solar cells. Plasmonics 11(4), 1003–1010 (2016)

    Article  Google Scholar 

  15. K. Aydin et al., Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, ncomms1528 (2011)

    Article  Google Scholar 

  16. F. Ding et al., Ultrabroadband strong light absorption based on thin multilayered metamaterials. Laser Photonics Rev. 8(6), 946–953 (2014)

    Article  ADS  Google Scholar 

  17. D. Hu, H. Wang, Q. Zhu, Design of six-band terahertz perfect absorber using a simple U-shaped closed-ring resonator. IEEE Photonics J. 8(2), 1–8 (2016)

    Article  Google Scholar 

  18. Y.P. Lee et al., Metamaterials for Perfect Absorption, vol. 236. (Springer, Berlin, 2016)

    Google Scholar 

  19. Y.-F.C. Chau et al., Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep. 7(1), 16817 (2017)

    Article  ADS  Google Scholar 

  20. H.J. Huang et al., Light energy transformation over a few nanometers. J. Phys. D Appl. Phys. 50(37), 375601 (2017)

    Article  Google Scholar 

  21. N.I. Landy et al., Perfect metamaterial absorber. Phys. Rev. Lett. 100(20), 207402 (2008)

    Article  ADS  Google Scholar 

  22. Y.-F.C. Chau et al., Depolying tunable metal-shell/dielectric core nanorod arrays as the virtually perfect absorber in the near-infrared regime. ACS Omega 3(7), 7508–7516 (2018)

    Article  Google Scholar 

  23. H. Tao et al., A dual band terahertz metamaterial absorber. J. Phys. D Appl. Phys. 43(22), 225102 (2010)

    Article  ADS  Google Scholar 

  24. W. Yang, Y.-F. Chou, Chau, S.-C. Jheng, Analysis of transmittance properties of surface plasmon modes on periodic solid/outline bowtie nanoantenna arrays. Phys. Plasmas 20(6), 064503 (2013)

    Article  ADS  Google Scholar 

  25. G. Dayal, S.A. Ramakrishna, Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks. J. Opt. 15(5), 055106 (2013)

    Article  ADS  Google Scholar 

  26. B.-X. Wang et al., Design of a four-band and polarization-insensitive terahertz metamaterial absorber. IEEE Photonics J. 7(1), 1–8 (2015)

    MathSciNet  Google Scholar 

  27. P. Yu et al., Dual-band absorber for multispectral plasmon-enhanced infrared photodetection. J. Phys. D Appl. Phys. 49(36), 365101 (2016)

    Article  ADS  Google Scholar 

  28. Y. Ekinci, H. Solak, J.F. Löffler, Plasmon resonances of aluminum nanoparticles and nanorods. J. Appl. Phys. 104(8), 083107 (2008)

    Article  ADS  Google Scholar 

  29. A. Ono et al., Fluorescence enhancement with deep-ultraviolet surface plasmon excitation. Opt. Express 21(15), 17447–17453 (2013)

    Article  ADS  Google Scholar 

  30. P. Rufangura, C. Sabah, Dual-band perfect metamaterial absorber for solar cell applications. Vacuum 120, 68–74 (2015)

    Article  ADS  Google Scholar 

  31. P.B. Johnson, R.-W. Christy, Optical constants of the noble metals. Phys. Rev. B 6(12), 4370 (1972)

    Article  ADS  Google Scholar 

  32. H.-T. Chen, Interference theory of metamaterial perfect absorbers. Opt. Express 20(7), 7165–7172 (2012)

    Article  ADS  Google Scholar 

  33. M. Amin, A.D. Khan, Polarization selective electromagnetic-induced transparency in the disordered plasmonic quasicrystal structure. J. Phys. Chem. C 119(37), 21633–21638 (2015)

    Article  Google Scholar 

  34. A. Khan, M. Amin, Polarization selective multiple fano resonances in coupled T-shaped metasurface. IEEE Photonics Technol. Lett. 29(19), 1611–1614 (2017)

    Article  ADS  Google Scholar 

  35. A.D. Khan et al., Light absorption enhancement in tri-layered composite metasurface absorber for solar cell applications. Opt. Mater. 84, 195–198 (2018)

    Article  ADS  Google Scholar 

  36. A.D. Khan, G. Miano, Higher order tunable Fano resonances in multilayer nanocones. Plasmonics 8(2), 1023–1034 (2013)

    Article  Google Scholar 

  37. A.D. Khan, G. Miano, Investigation of plasmonic resonances in mismatched gold nanocone dimers. Plasmonics 9(1), 35–45 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimal Daud Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.D., Iqbal, J. & ur Rehman, S. Polarization-sensitive perfect plasmonic absorber for thin-film solar cell application. Appl. Phys. A 124, 610 (2018). https://doi.org/10.1007/s00339-018-2033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2033-3

Navigation