Skip to main content
Log in

Multimetal–VO2 Switchable Plasmonic Metasurface for High Contrast Optical Switching and Control at Short Wavelength Infrared Regime

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A switchable plasmonic metasurface is proposed for high contrast optical switching and control at short wavelength infrared regime. The metasurface is made of metal–VO2–metal (MVM) multilayer layer pairs structured centrally with circular cylindrical ring aperture and investigated numerically using FDTD computations. Left circularly polarized (LCP) light excitation shows two resonant reflection dips at  ~ 2.5 µm and ~ 1 µm for semiconducting VO2 and single resonant dip at ~ 1 µm for metallic VO2. From the near-field analysis, we attribute the high wavelength reflection dip to the strong confinement of magnetic near-fields at the VO2 regime and the lower wavelength reflection dip to the electric dipole resonance. The change in VO2 phase from semiconducting to metallic or vice versa results in significant reflection switching (ΔR), > 60% for the higher wavelength (2.5 µm) reflection dip. The study also confirms the reflection switching to be polarization independent with large launch angle tolerance (> 10°). The design flexibility is further tested numerically by replacing various metal layers, central discs size, number of layer pairs and periods showing wide workable wavelengths ranging from 1.5 to 3 µm. Structuring the central discs system shows further modulation in the working wavelength and high wavelength reflection switching (ΔR) > 80% with large bandwidth > 500 nm (full width at half-maximum (FWHM)). The proposed metasurface is suitable for optoelectronic device integration for dynamic control and high contrast optical switching at the infrared regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The data and materials used in this study are not published or submitted elsewhere. All the data are available within this report.

Code Availability

Not applicable.

References

  1. Kocer H, Butun S, Banar B, Wang K, Tongay S, Wu J, Aydin K (2015) Thermal tuning of infrared resonant absorbers based on hybrid gold-VO2 nanostructures. Appl Phys Lett 106:161104

    Article  Google Scholar 

  2. Liu C, Yin J, Zhang S (2021) Temperature-tunable THz metamaterial absorber based on vanadium dioxide. Infrared Phys Technol 119:103939

    Article  CAS  Google Scholar 

  3. Wu G, Jiao X, Wang Y, Zhao Z, Wang Y, Liu J (2021) Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide. Opt Express 29:2703

    Article  CAS  PubMed  Google Scholar 

  4. Guo P, Weimer MS, Emery JD, Diroll BT, Chen X, Hock AS, Chang RPH, Martinson ABF, Schaller RD (2017) Conformal coating of a phase change material on ordered plasmonic nanorod arrays for broadband all-optical switching. ACS Nano 11:693

    Article  CAS  PubMed  Google Scholar 

  5. Stewart JW et al (2020) Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat Mater 19:158

    Article  CAS  PubMed  Google Scholar 

  6. Wang F, Chen H, Lan D, Zhang F, Sun Y, Zhang X, Li S, Cheng T (2021) Highly efficient and robust broadband nano-VO2(M) saturable absorber for nonlinear optics and ultrafast photonics. Adv Opt Mater 9:2100795

    Article  CAS  Google Scholar 

  7. Negm A, Bakr M, Howlader M, Ali S (2021) Switching plasmonic resonance in multi-gap infrared metasurface absorber using vanadium dioxide patches. Smart Mater Struct 30:075011

    Article  CAS  Google Scholar 

  8. Shabanpour J, Beyraghi S, Cheldavi A (2020) Ultrafast reprogrammable multifunctional vanadium-dioxide assisted metasurface for dynamic THz wavefront engineering. Sci Rep 10:8950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun Y, Wang Y, Ye H, Li J, Fan H, Yu L, Yu Z, Liu Y, Wu T (2022) Switchable bifunctional metasurface based on VO2 for ultra-broadband polarization conversion and perfect absorption in same infrared waveband. Opt Commun 503:127442

    Article  CAS  Google Scholar 

  10. Song Z, Zhang J (2020) Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Opt Exp 28:12487

    Article  Google Scholar 

  11. He H, Shang X, Xu L, Zhao J, Cai W, Wang J, Zhao C, Wang L (2020) Thermally switchable bifunctional plasmonic metasurface for perfect absorption and polarization conversion based on VO2. Opt Exp 28:4563

    Article  Google Scholar 

  12. Lv T, Li Y, Qin C, Qu J, Lv B, Li W, Zhu Z, Li Y, Guan C, Shi J (2022) Versatile polarization manipulation in vanadium dioxide-integrated terahertz metamaterial. Opt Express 30:5439

    Article  CAS  PubMed  Google Scholar 

  13. Wang S, Kang L, Werner DH (2018) Active terahertz chiral metamaterials based on phase transition of vanadium dioxide (VO2). Sci Rep 8:189

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lv TT, Li YX, Ma HF, Zhu Z, Li ZP, Guan CY, Shi JH, Zhang H, Cui TJ (2016) Hybrid metamaterial switching for manipulating chirality based on VO2 phase transition. Sci Rep 6:23186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Solanki U, Mandal P (2022) Phase sensitive VO2-metal switchable plasmonic metasurface for thermal controlling of broad band near-infrared absorption. Opt Quant Electron 54:794

    Article  CAS  Google Scholar 

  16. Mandal P, Mohan S, Sharma S, Goyat MS (2019) Broadband multi-resonant circular dichroism in metal-VO2 hybrid dagger-like plasmonic structure for switching application. Photonics Nanostruct Fundam Appl 37:100735

    Article  Google Scholar 

  17. He J, Zhang M, Shu S, Yan Y, Wang M (2020) VO2 based dynamic tunable absorber and its application in switchable control and real-time color display in the visible region. Opt Exp 28:37590

    Article  CAS  Google Scholar 

  18. Li X, Tang S, Ding F, Zhong S, Yang Y, Jiang T, Zhou J (2019) Switchable multifunctional terahertz metasurfaces employing vanadium dioxide. Sci Rep 9:5454

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schalch JS, Chi Y, He Y, Tang Y, Zhao X, Zhang X, Wen Q, Averitt RD (2020) Broadband electrically tunable VO2-Metamaterial terahertz switch with suppressed reflection. Microw Opt Technol Lett 62:2782

    Article  Google Scholar 

  20. Sun M, Taha M, Walia S, Bhaskaran M, Sriram S, Shieh W, Unnithan RR (2018) A photonic switch based on a hybrid combination of metallic nanoholes and phase-change vanadium dioxide. Sci Rep 8:11106

    Article  PubMed  PubMed Central  Google Scholar 

  21. Naorem R, Dayal G, Ramakrishna SA, Rajeswaran B, Umarji AM (2015) Thermally switchable metamaterial absorber with a VO2 ground plane. Opt Commun 346:154

    Article  CAS  Google Scholar 

  22. Cui Y, Ke Y, Liu C, Chen Z, Wang N, Zhang L, Zhou Y, Wang S, Gao Y, Long Y (2018) Thermochromic VO2 for energy-efficient Smart Windows. Joule 2:1707

    Article  CAS  Google Scholar 

  23. Hao Q, Li W, Xu H, Wang J, Yin Y, Wang H, Ma L, Ma F, Jiang X, Schmidt OG, Chu PK (1918) VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications. Adv Mater 10:1705421

    Google Scholar 

  24. Zhou J, Gao Y, Zhang Z, Luo H, Cao C, Chen Z, Dai L, Liu X (2013) VO2 thermochromic smart window for energy savings and generation. Sci Rep 3:3029

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun K, Xiao W, Wheeler C, Simeoni M, Urbani A, Gaspari M, Mengali S, de Groot CH, Muskens O (2022) VO2 metasurface smart thermal emitter with high visual transparency for passive radiative cooling regulation in space and terrestrial applications. Nanophotonics 11:4101

    Article  CAS  Google Scholar 

  26. Ke Y, Yin Y, Zhang Q, Tan Y, Hu P, Wang S, Tang Y, Zhou Y, Wen X, Wu S, White TJ, Yin J, Peng J, Xiong Q, Zhao D, Long Y (2019) Adaptive thermochromic Windows from active plasmonic elastomers. Joule 3:858

    Article  CAS  Google Scholar 

  27. Mou N, Tang B, Li J, Dong H, Zhang L (2022) Switchable ultra-broadband terahertz wave absorption with VO2-based metasurface. Sci Rep 12:2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xu Z, Li Q, Du K, Long S, Yang Y, Cao X, Luo H, Zhu H, Ghosh P, Shen W, Qiu M (2000) Spatially resolved dynamically reconfigurable multilevel control of thermal emission. Laser Photonics Rev 14:1900162

    Article  Google Scholar 

  29. Chen J, Tang F, Wang X, Wu J, Wu Y, Ye X, Wang Y, Yang L (2021) High efficiency broadband near-infrared absorbers based on tunable SiO2-VO2-MoS2 multilayer metamaterials. Results Phys 26:104404

    Article  Google Scholar 

  30. Liu Y, Qian Y, Hu F, Jiang M, Zhang L (2020) A dynamically adjustable broadband terahertz absorber based on a vanadium dioxide hybrid metamaterial. Results Phys 19:103384

    Article  Google Scholar 

  31. Jia Z-Y, Shu F-Z, Gao Y-J, Cheng F, Peng R-W, Fan R-H, Liu Y, Wang M (2018) Dynamically switch the polarization state of light based on the phase transition of vanadium dioxide. Phys Rev Appl 9:034009

    Article  Google Scholar 

  32. Lei L, Lou F, Tao K, Huang H, Cheng X, Xu P (2019) Tunable and scalable broadband metamaterial absorber involving VO2-based phase transition. Photonics Res 7:734

    Article  CAS  Google Scholar 

  33. Zhao Y, Huang Q, Cai H, Lin X, Lu Y (2018) A broadband and switchable VO2-based perfect absorber at the THz frequency. Opt Commun 426:443

    Article  CAS  Google Scholar 

  34. Yang J-K, Jeong H-S (2021) Switchable metasurface with VO2 thin film at visible light by changing temperature. Photonics 8:57

    Article  CAS  Google Scholar 

  35. Peng H, Ji C, Lu L, Li Z, Li H, Wang J, Wu Z, Jiang Y, Xu J, Liu Z (2017) Broadband planar multilayered absorbers tuned by VO2 phase transition. J Appl Phys 122:053106

    Article  Google Scholar 

  36. Kim H, Cheung K, Auyeng CYR, Wilson ED, Charipar K, Pique A, Charipar NA (2019) VO2-based switchable radiator for spacecraft thermal control. Sci Rep 9:11329

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morsy AM, Barako MT, Jankovic V, Wheeler VD, Knight MW, Papadakis GT, Sweatlock LA, Hon PWC, Povinelli ML (2020) Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films. Sci Rep 10:13964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cai W, Chettiar UK, Yuan H-K, de Silva VC, Kildishev AV, Drachev VP, Shalaev VM (2007) Metamagnetics with rainbow colors. Opt Express 15:3333

    Article  PubMed  Google Scholar 

Download references

Funding

The present work is financially supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India (File:CRG/2019/000701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mandal.

Ethics declarations

Ethical Approval

Not applicable (as the present work is non-biological/life science work).

Consent to Participate

Not applicable (as the present work is non-biological/life science work).

Consent for Publication

Not applicable (as the present work is non-biological/life science work).

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, P. Multimetal–VO2 Switchable Plasmonic Metasurface for High Contrast Optical Switching and Control at Short Wavelength Infrared Regime. Plasmonics 18, 2323–2334 (2023). https://doi.org/10.1007/s11468-023-01953-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01953-3

Keywords

Navigation