Skip to main content
Log in

Plasmonic Coupling Effects on the Refractive Index Sensitivities of Plane Au-Nanosphere-Cluster Sensors

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Plasmonic coupling effects (between neighboring components) are able to red shift the peak wavelengths of dipolar-localized surface plasmon resonances (LSPRs) and increase the corresponding refractive index sensitivity of nanoparticle sensors. The coupling effects on plane Au-nanosphere-cluster (including nanosphere dimer, trimer, pentamer, and heptamer) sensors are numerically investigated by finite element method (FEM). We found that the coupling does not violate the quadratic response characteristics of LSPR peak wavelengths, hence the linear responses of the sensitivities to the bulk refractive index of Au cluster sensors. Yet, for nanosphere dimer sensors, they contribute to the exponential decrease of sensitivities with their gap distances, which follow the universal plasmon ruler behavior. The amplitude of their fractional sensitivity shift is revealed to be bulk refractive index independent, which is different from that of their fractional LSPR peak wavelength shift. These are analytically explained well in terms of an effective nanoparticle model. The present work also gives an upper sensitivity limit for Au nanosphere dimer systems and provides a method to estimate the interparticle separation between the two component nanospheres of the dimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang R, Zhang Y, Dong ZC, Jiang S, Zhang C, Chen LG, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang JL, Hou JG (2013) Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498(7452):82–86. https://doi.org/10.1038/nature12151

    Article  CAS  PubMed  Google Scholar 

  2. Zhang W, Fischer H, Schmid T, Zenobi R, Martin OJF (2009) Mode-selective surface-enhanced Raman spectroscopy using nanofabricated plasmonic dipole antennas. J Phys Chem C 113(33):14672–14675. https://doi.org/10.1021/jp9042304

    Article  CAS  Google Scholar 

  3. Stockman MI (2015) Nanoplasmonic sensing and detection. Science 348(6232):287–288. https://doi.org/10.1126/science.aaa6805

    Article  CAS  PubMed  Google Scholar 

  4. Chikkaraddy R, De B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ (2016) Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535(7610):127–130. https://doi.org/10.1038/nature17974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McFarland AD, Van Duyne RP (2003) Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Letts 3(8):1057–1062. https://doi.org/10.1021/nl034372s

    Article  CAS  Google Scholar 

  6. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604. https://doi.org/10.1021/ja020393x

    Article  CAS  PubMed  Google Scholar 

  7. Tao C, Gang C, Shuangxi X, Tom W, Hongyu C (2010) Scalable routes to janus Au-SiO2 and ternary Ag-Au-SiO2 nanoparticles. Chem Mater 22:3826–3828

    Article  Google Scholar 

  8. Larsson EM, Alegret J, Käll M, Sutherland DS (2007) Characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Letts 7(5):1256–1263. https://doi.org/10.1021/nl0701612

    Article  CAS  Google Scholar 

  9. Mishra AK, Mishra SK (2016) Gas sensing in Kretschman configuration utilizing bi-metallic layer of rhodium-silver in visible region. Sens Actuat B-Chem. 237:969–973. https://doi.org/10.1016/j.snb.2016.07.041

    Article  CAS  Google Scholar 

  10. Cao J, Tu MH, Sun T, Grattan KTV (2013) Wavelength-based localized surface plasmon resonance optical fiber biosensor. Sens Actuat B-Chem 181:611–619. https://doi.org/10.1016/j.snb.2013.02.052

    Article  CAS  Google Scholar 

  11. Salmanogli A, Nasseri B, Piskin E (2017) Plasmon-plasmon interaction effect on reproducible surface-enhanced Raman scattering for dye molecule detection. Sensors Actuators A Phys 262:87–98. https://doi.org/10.1016/j.sna.2017.05.013

    Article  CAS  Google Scholar 

  12. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461(7264):629–632. https://doi.org/10.1038/nature08364

    Article  CAS  PubMed  Google Scholar 

  13. XH C, CC Z, Rothberg L, Ng MK (2008) Plasmon enhancement of bulk hetero-junction organic photovoltaic devices by electrode modification. Appl Phys Lett 93:123302

    Article  Google Scholar 

  14. Zhe L, XH C, Zhou JP, Jiang ZY, Huang SM, Zhu FR, Piao XQ, Sun Z (2015) Performance enhancement in inverted polymer solar cells incorporating ultrathin Au and LiF modified ZnO electron transporting interlayer. Org Electron 17:364–370

    Article  Google Scholar 

  15. JF W, XK J, JP Z, LK P, SM H, Chen XH (2016) Improved performance of polymer solar cells by thermal evaporation of AgAl alloy nanostructures into the hole-transport layer. ACS Appl Mater Interfaces 8:26098–26104

    Article  Google Scholar 

  16. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111(6):3828–3857. https://doi.org/10.1021/cr100313v

    Article  CAS  PubMed  Google Scholar 

  17. Urban AS, Shen XS, Wang YM, Large N, Wang H, Knight MW, Nordlander P, Chen HY, Halas NJ (2013) Three-dimensional plasmonic nanoclusters. Nano Lett 13(9):4399–4403. https://doi.org/10.1021/nl402231z

    Article  CAS  PubMed  Google Scholar 

  18. Bao K, Mirtin NA, Nordlander P (2010) Fano resonances in planar silver nanosphere clusters. Appl Phys A Mater Sci Process 100(2):333–339. https://doi.org/10.1007/s00339-010-5861-3

    Article  CAS  Google Scholar 

  19. Daniel WB, Mirin NA, Nordlander P (2006) Plasmon modes of nanosphere trimers and quadrumers. J Phys Chem B 110:12302–12310

    Article  Google Scholar 

  20. Jérémy B, Martin OJF (2014) Refractive index sensing with Fano resonant plasmonic nanostructures: a symmetry based nonlinear approach. Nano 6:15262

    Google Scholar 

  21. Erik M, Borja S, Peng C, Anders E, Bo L, Daniel A (2014) Optimizing the refractive index sensitivity of plasmonically coupled gold nanoparticles. Plasmonics 9:773–780

    Article  Google Scholar 

  22. Chen H, Sun Z, Ni W, Woo KC, Lin HQ, Sun L, Yan C, Wang J (2009) Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes. Small 5(18):2111–2119. https://doi.org/10.1002/smll.200900256

    Article  CAS  PubMed  Google Scholar 

  23. Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability. Nano Lett 10(8):3184–3189. https://doi.org/10.1021/nl102108u

    Article  CAS  PubMed  Google Scholar 

  24. Mirin NA, Bao K, Nordlander P (2009) Fano resonances in plasmonic nanoparticle aggregates. J Phys Chem A 113(16):4028–4034. https://doi.org/10.1021/jp810411q

    Article  CAS  PubMed  Google Scholar 

  25. Prashant KJ, Huang WY, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088

    Article  Google Scholar 

  26. Ophélie SF, Gaëtan L, Rabah B, Sabine S, Abdellatif A (2015) Dependence between the refractive-index sensitivity of metallic nanoparticles and the spectral position of their localized surface plasmon band: a numerical and analytical study. J Phys Chem C 119:28551–28559

    Article  Google Scholar 

  27. Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110(39):19220–19225. https://doi.org/10.1021/jp062536y

    Article  CAS  PubMed  Google Scholar 

  28. Du CL, Wang BB, Sun F, Huang ML, He CJ, Liu YW, Zhang XJ, Shi DN (2015) Refractive index sensitivities of plane Ag nanosphere cluster sensors. Sensor Actuat B-Chem. 215:142–145. https://doi.org/10.1016/j.snb.2015.03.058

    Article  CAS  Google Scholar 

  29. Jensen TR, Duval ML, Kelly KL, Lazarides AA, Schatz GC, Van Duyne RP (1999) Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of sliver nanoparticles. J Phys Chem B 103(45):9846–9853. https://doi.org/10.1021/jp9926802

    Article  CAS  Google Scholar 

  30. Du Y, Shi L, Hong M, Li H, Li D, Liu M (2013) A surface plasmon resonance biosensor based on gold nanoparticle array. Opt Commun 298–299:232–236. https://doi.org/10.1016/j.optcom.2013.02.024

    Article  CAS  Google Scholar 

  31. Figueiredo NM, Kubart T, Sanchez-García JA, Galindo RE, Climent-Font A, Cavaleiro A (2014) Optical properties and refractive index sensitivity of reactive sputtered oxide coatings with embedded Au clusters. J Appl Phys 115(6):063512. https://doi.org/10.1063/1.4861136

    Article  CAS  Google Scholar 

  32. Khan AU, Zhao S, Liu GL (2016) Key parameter controlling the sensitivity of plasmonics metal nanoparticles: aspect ratio. J Phys Chem C 120(34):19353–19364. https://doi.org/10.1021/acs.jpcc.6b06519

    Article  CAS  Google Scholar 

  33. Johnson PB, Christy RW (1972) Optical constants of noble metals. Phys Rev B 6(12):4370–4739. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  34. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin. https://doi.org/10.1007/978-3-662-09109-8

    Book  Google Scholar 

  35. Chau YFC, Syu JY, Chao CTC, Chiang HP, Lim CM (2017) Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications. J Phys D Appl Phys 50(4):045105. https://doi.org/10.1088/1361-6463/aa506b

    Article  CAS  Google Scholar 

  36. Du CL, Du CJ, You YM, Zhu Y, Jin SL, He CJ, Shi DN (2011) Numerical calculation the enhanced Raman scattering performances of individual Ag nanowire tips. Appl Opt 50(25):4922–4926. https://doi.org/10.1364/AO.50.004922

    Article  CAS  Google Scholar 

  37. Iqbal T, Afsheen S (2016) Coupling efficiency of surface plasmon polaritons for 1D plasmonic grating: role of under- and over-milling. Plasmonics 11(5):1247–1256. https://doi.org/10.1007/s11468-015-0168-z

    Article  CAS  Google Scholar 

  38. Khoury CG, Norton SJ, Vo-Dinh T (2009) Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. ACS Nano 3(9):2776–2788. https://doi.org/10.1021/nn900664j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xu HX, Käll M (2002) Modeling the optical response of nanoparticle-based surface plasmon resonance sensors. Sens Actuators B: Chem 87(2):244–249. https://doi.org/10.1016/S0925-4005(02)00243-5

    Article  CAS  Google Scholar 

  40. Du CL, Huang ML, Chen T, Sun F, Wang BB, He CJ, Shi DN (2014) Linear or quadratic plasmon peak sensitivities for individual Au/Ag nanosphere sensors. Sensor Actuat B-Chem 203:812–816. https://doi.org/10.1016/j.snb.2014.07.038

    Article  CAS  Google Scholar 

Download references

Funding

This work was finically supported by the Fundamental Research Funds for the Central Universities (No. NS2016074) and by the Natural Science Foundation of China (No. 11774171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChaoLing Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, C., Peng, S., Yang, W. et al. Plasmonic Coupling Effects on the Refractive Index Sensitivities of Plane Au-Nanosphere-Cluster Sensors. Plasmonics 13, 1729–1734 (2018). https://doi.org/10.1007/s11468-017-0685-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0685-z

Keywords

Navigation