Skip to main content
Log in

A Review of Alkali Tungsten Bronze Nanoparticles for Applications in Plasmonics

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The optimal material for plasmonic applications is an electrical conductor with low damping losses, high chemical and thermal stability, simple low-cost synthetic methods, and a resonance frequency that can be tuned to suit a desired application. To date, plasmonic applications have predominantly relied on Au or Ag, but these materials are limited respectively by high damping losses and rapid corrosion. In the search for alternative plasmonic materials, the alkali tungsten bronzes have been identified as possible candidates, as they display many of the features of the optimal plasmonic material. In this review, we first describe the crystallography, electronic structure, synthesis methods and plasmonic behaviour of the tungsten bronzes. A range of plasmonic applications for tungsten bronze nanoparticles, including solar-control filtering, plasmonic photocatalysis and plasmonic photothermal therapy, are then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, US, Boston, MA

    Book  Google Scholar 

  2. Fox M (2003) Optical properties of solids, 1st edn. Oxford University Press, Oxford, New York

    Google Scholar 

  3. Keast VJ (2013) An introduction to the calculation of valence EELS: quantum mechanical methods for bulk solids. Micron 44:93–100. https://doi.org/10.1016/j.micron.2012.08.001

    Article  CAS  Google Scholar 

  4. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley-VCH

    Book  Google Scholar 

  5. Gonçalves MR (2014) Plasmonic nanoparticles: fabrication, simulation and experiments. J Phys D: Appl Phys 47:213001. https://doi.org/10.1088/0022-3727/47/21/213001

    Article  CAS  Google Scholar 

  6. Jang YH, Jang YJ, Kim S et al (2016) Plasmonic solar cells: from rational design to mechanism overview. Chem Rev 116:14982–15034. https://doi.org/10.1021/acs.chemrev.6b00302

    Article  CAS  Google Scholar 

  7. Zhang X, Chen YL, Liu R-S, Tsai DP (2013) Plasmonic photocatalysis. Rep Prog Phys 76:046401. https://doi.org/10.1088/0034-4885/76/4/046401

    Article  CAS  Google Scholar 

  8. Guo L, Jackman JA, Yang H-H et al (2015) Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 10:213–239. https://doi.org/10.1016/j.nantod.2015.02.007

    Article  CAS  Google Scholar 

  9. Pelton M, Bryant GW (2013) Introduction to metal-nanoparticle plasmonics. Wiley; Science Wise Publishing, Hoboken, New Jersey

    Google Scholar 

  10. Rycenga M, Cobley CM, Zeng J et al (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712. https://doi.org/10.1021/cr100275d

    Article  CAS  Google Scholar 

  11. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665. https://doi.org/10.1016/j.ccr.2012.09.002

    Article  CAS  Google Scholar 

  12. Jiang Y, Pillai S, Green MA (2016) Realistic silver optical constants for plasmonics. Sci Rep 6:30605. https://doi.org/10.1038/srep30605

    Article  CAS  Google Scholar 

  13. Olmon RL, Slovick B, Johnson TW et al (2012) Optical dielectric function of gold. Phys Rev B 86:235147. https://doi.org/10.1103/PhysRevB.86.235147

    Article  CAS  Google Scholar 

  14. Naik GV, Shalaev VM, Boltasseva A (2013) Alternative plasmonic materials: beyond gold and silver. Adv Mater 25:3264–3294. https://doi.org/10.1002/adma.201205076

    Article  CAS  Google Scholar 

  15. West PR, Ishii S, Naik GV et al (2010) Searching for better plasmonic materials. Laser Photon Rev 4:795–808. https://doi.org/10.1002/lpor.200900055

    Article  CAS  Google Scholar 

  16. Amendola V, Pilot R, Frasconi M et al (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys: Condens Matter 29:203002. https://doi.org/10.1088/1361-648X/aa60f3

    Article  Google Scholar 

  17. Keast VJ, Myles TA, Shahcheraghi N, Cortie MB (2016) Corrosion processes of triangular silver nanoparticles compared to bulk silver. J Nanopart Res 18:45. https://doi.org/10.1007/s11051-016-3354-9

    Article  CAS  Google Scholar 

  18. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  19. Blaber MG, Arnold MD, Ford MJ (2009) Search for the ideal plasmonic nanoshell: the effects of surface scattering and alternatives to gold and silver. J Phys Chem C 113:3041–3045. https://doi.org/10.1021/jp810808h

    Article  CAS  Google Scholar 

  20. Blaber MG, Arnold MD, Ford MJ (2010) A review of the optical properties of alloys and intermetallics for plasmonics. J Phys: Condens Matter 22:143201. https://doi.org/10.1088/0953-8984/22/14/143201

    Article  CAS  Google Scholar 

  21. Keast VJ, Barnett RL, Cortie MB (2014) First principles calculations of the optical and plasmonic response of Au alloys and intermetallic compounds. J Phys: Condens Matter 26:305501. https://doi.org/10.1088/0953-8984/26/30/305501

    Article  CAS  Google Scholar 

  22. Gong C, Leite MS (2016) Noble metal alloys for plasmonics. ACS Photonics 3:507–513. https://doi.org/10.1021/acsphotonics.5b00586

    Article  CAS  Google Scholar 

  23. Blaber MG, Arnold MD, Ford MJ (2009) Optical properties of intermetallic compounds from first principles calculations: a search for the ideal plasmonic material. J Phys: Condens Matter 21:144211. https://doi.org/10.1088/0953-8984/21/14/144211

    Article  CAS  Google Scholar 

  24. Blaber MG, Arnold MD, Ford MJ (2010) Designing materials for plasmonic systems: the alkali–noble intermetallics. J Phys: Condens Matter 22:095501. https://doi.org/10.1088/0953-8984/22/9/095501

    Article  CAS  Google Scholar 

  25. Palik ED (1998) Handbook of optical constants of solids. Academic Press

    Google Scholar 

  26. Guler U, Ndukaife JC, Naik GV et al (2013) Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Lett 13:6078–6083. https://doi.org/10.1021/nl4033457

    Article  CAS  Google Scholar 

  27. Naik GV, Kim J, Boltasseva A (2011) Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt Mater Express 1:1090–1099. https://doi.org/10.1364/OME.1.001090

    Article  CAS  Google Scholar 

  28. Naik GV, Schroeder JL, Ni X et al (2012) Titanium nitride as a plasmonic material for visible and near-infrared wavelengths. Opt Mater Express 2:478–489. https://doi.org/10.1364/OME.2.000478

    Article  CAS  Google Scholar 

  29. Karaballi RA, Monfared YE, Dasog M (2020) Overview of synthetic methods to prepare plasmonic transition metal nitride nanoparticles. Chem– A Eur J 26:8499–8505. https://doi.org/10.1002/chem.201905217

    Article  CAS  Google Scholar 

  30. Babicheva VE, Boltasseva A, Lavrinenko AV (2015) Transparent conducting oxides for electro-optical plasmonic modulators. Nanophotonics 4:165–185. https://doi.org/10.1515/nanoph-2015-0004

    Article  CAS  Google Scholar 

  31. Jaffray W, Saha S, Shalaev VM et al (2022) Transparent conducting oxides: from all-dielectric plasmonics to a new paradigm in integrated photonics. Adv Opt Photon, AOP 14:148–208. https://doi.org/10.1364/AOP.448391

    Article  Google Scholar 

  32. Liu X, Swihart MT (2014) Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 43:3908–3920. https://doi.org/10.1039/C3CS60417A

    Article  CAS  Google Scholar 

  33. Mattox TM, Ye X, Manthiram K et al (2015) Chemical control of plasmons in metal chalcogenide and metal oxide nanostructures. Adv Mater 27:5830–5837. https://doi.org/10.1002/adma.201502218

    Article  CAS  Google Scholar 

  34. Agrawal A, Johns RW, Milliron DJ (2017) Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu Rev Mater Res 47:1–31. https://doi.org/10.1146/annurev-matsci-070616-124259

    Article  CAS  Google Scholar 

  35. Khamh H, Sachet E, Kelley K et al (2018) As good as gold and better: conducting metal oxide materials for mid-infrared plasmonic applications. J Mater Chem C 6:8626–8342. https://doi.org/10.1039/C7TC05760A

    Article  Google Scholar 

  36. Patsalas P, Kalfagiannis N, Kassavetis S et al (2018) Conductive nitrides: growth principles, optical and electronic properties, and their perspectives in photonics and plasmonics. Mater Sci Eng R Rep 123:1–55. https://doi.org/10.1016/j.mser.2017.11.001

    Article  Google Scholar 

  37. Lalisse A, Tessier G, Plain J, Baffou G (2016) Plasmonic efficiencies of nanoparticles made of metal nitrides (TiN, ZrN) compared with gold. Sci Rep 6:38647. https://doi.org/10.1038/srep38647

    Article  CAS  Google Scholar 

  38. Agrawal A, Cho SH, Zandi O et al (2018) Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev 118:3121–3207. https://doi.org/10.1021/acs.chemrev.7b00613

    Article  CAS  Google Scholar 

  39. Guler U, Suslov S, Kildishev AV et al (2015) Colloidal plasmonic titanium nitride nanoparticles: properties and applications. Nanophotonics 4:269–276. https://doi.org/10.1515/nanoph-2015-0017

    Article  CAS  Google Scholar 

  40. Briggs JA, Naik GV, Petach TA et al (2016) Fully CMOS-compatible titanium nitride nanoantennas. Appl Phys Lett 108:051110. https://doi.org/10.1063/1.4941413

    Article  CAS  Google Scholar 

  41. Saha S, Dutta A, Kinsey N et al (2018) On-chip hybrid photonic-plasmonic waveguides with ultrathin titanium nitride films. ACS Photonics 5:4423–4431. https://doi.org/10.1021/acsphotonics.8b00885

    Article  CAS  Google Scholar 

  42. Shah D, Reddy H, Kinsey N et al (2017) Optical properties of plasmonic ultrathin TiN films. Advanced Optical Materials 5:1700065. https://doi.org/10.1002/adom.201700065

    Article  CAS  Google Scholar 

  43. Khezripour Z, Mahani FF, Mokhtari A (2018) Performance improvement of ultrathin organic solar cells utilizing light-trapping aluminum-titanium nitride nanosquare arrays. Opt Mater 84:651–657. https://doi.org/10.1016/j.optmat.2018.07.073

    Article  CAS  Google Scholar 

  44. Venugopal N, Gerasimov VS, Ershov AE et al (2017) Titanium nitride as light trapping plasmonic material in silicon solar cell. Opt Mater 72:397–402. https://doi.org/10.1016/j.optmat.2017.06.035

    Article  CAS  Google Scholar 

  45. Hao Q, Li W, Xu H et al (2018) VO2/TiN plasmonic thermochromic smart coatings for room-temperature applications. Adv Mater 30:1705421. https://doi.org/10.1002/adma.201705421

    Article  CAS  Google Scholar 

  46. Manthiram K, Alivisatos AP (2012) Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J Am Chem Soc 134:3995–3998. https://doi.org/10.1021/ja211363w

    Article  CAS  Google Scholar 

  47. Liu Y, Liu M, Swihart MT (2017) Plasmonic copper sulfide-based materials: a brief introduction to their synthesis, doping, alloying, and applications. J Phys Chem C 121:13435–13447. https://doi.org/10.1021/acs.jpcc.7b00894

    Article  CAS  Google Scholar 

  48. Lounis SD, Runnerstrom EL, Llordés A, Milliron DJ (2014) Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals. J Phys Chem Lett 5:1564–1574. https://doi.org/10.1021/jz500440e

    Article  CAS  Google Scholar 

  49. Comin A, Manna L (2014) New materials for tunable plasmonic colloidal nanocrystals. Chem Soc Rev 43:3957–3975. https://doi.org/10.1039/C3CS60265F

    Article  CAS  Google Scholar 

  50. Dickens PG, Whittingham MS (1968) The tungsten bronzes and related compounds. Q Rev Chem Soc 22:30–44. https://doi.org/10.1039/QR9682200030

    Article  CAS  Google Scholar 

  51. Goodenough JB (1971) Metallic oxides. Prog Solid State Chem 5:145–399. https://doi.org/10.1016/0079-6786(71)90018-5

    Article  CAS  Google Scholar 

  52. Hagenmuller P (1975) Tungsten bronzes, vanadium bronzes and related compounds. In: Bevan DJM, Hagenmuller P (eds) Nonstoichiometric compounds: tungsten bronzes, vanadium bronzes and related compounds, 1st edn. Pergamon Press, Great Britain, pp 541–605

    Google Scholar 

  53. Wöhler F (1825) Sur le Tungstène (On Tungsten). Ann Chim Phys 29:43–53

    Google Scholar 

  54. Guo J-D, Whittingham MS (1993) Tungsten oxides and bronzes: synthesis, diffusion and reactivity. Int J Mod Phys B 07:4145–4164. https://doi.org/10.1142/S0217979293003607

    Article  CAS  Google Scholar 

  55. Raub ChJ, Sweedler AR, Jensen MA et al (1964) Superconductivity of sodium tungsten bronzes. Phys Rev Lett 13:746–747. https://doi.org/10.1103/PhysRevLett.13.746

    Article  CAS  Google Scholar 

  56. Haldolaarachchige N, Gibson Q, Krizan J, Cava RJ (2014) Superconducting properties of the KxWO3 tetragonal tungsten bronze and the superconducting phase diagram of the tungsten bronze family. Phys Rev B 89:104520. https://doi.org/10.1103/PhysRevB.89.104520

    Article  CAS  Google Scholar 

  57. Bierstedt PE, Bither TA, Darnell FJ (1966) Superconductivity of some new hexagonal tungsten bronzes. Solid State Commun 4:25–26. https://doi.org/10.1016/0038-1098(66)90097-4

    Article  CAS  Google Scholar 

  58. Green M, Smith WC, Weiner JA (1976) A thin film electrochromic display based on the tungsten bronzes. Thin Solid Films 38:89–100. https://doi.org/10.1016/0040-6090(76)90283-2

    Article  CAS  Google Scholar 

  59. Cisternas R, Kahlert H, Wulff H, Scholz F (2015) The electrode responses of a tungsten bronze electrode differ in potentiometry and voltammetry and give access to the individual contributions of electron and proton transfer. Electrochem Commun 56:34–37. https://doi.org/10.1016/j.elecom.2015.04.005

    Article  CAS  Google Scholar 

  60. Broyde B (1968) Tungsten bronze fuel cell catalysts. J Catal 10:13–18. https://doi.org/10.1016/0021-9517(68)90217-0

    Article  CAS  Google Scholar 

  61. Vong MSW, Stevenson S, Sermon PA (1989) Copper tungsten bronzes: Novel preparative routes and reactivity. Solid State Ionics 32–33 Part 1:91–96. https://doi.org/10.1016/0167-2738(89)90207-5

    Article  Google Scholar 

  62. Kaspera W, Zieliński S, Kotarba A (2017) Alkali tungsten bronzes as soot oxidation catalysts: The key role of electrodonor properties of catalytic surface. Catal Commun 98:76–80. https://doi.org/10.1016/j.catcom.2017.05.009

    Article  CAS  Google Scholar 

  63. Takeda H, Adachi K (2007) Near infrared absorption of tungsten oxide nanoparticle dispersions. J Am Ceram Soc 90:4059–4061. https://doi.org/10.1111/j.1551-2916.2007.02065.x

    Article  CAS  Google Scholar 

  64. Chao L, Bao L, Wei W, Tegus O (2019) A review of recent advances in synthesis, characterization and NIR shielding property of nanocrystalline rare-earth hexaborides and tungsten bronzes. Sol Energy 190:10–27. https://doi.org/10.1016/j.solener.2019.07.087

    Article  CAS  Google Scholar 

  65. Yin S, Asakura Y (2019) Recent research progress on mixed valence state tungsten based materials. Tungsten. https://doi.org/10.1007/s42864-019-00001-0

    Article  Google Scholar 

  66. Ribnick AS, Post B, Banks E (1963) Phase transitions in sodium tungsten bronzes. In: Ward R (ed) Nonstoichiometric Compounds. American Chemical Society, pp 246–253

    Chapter  Google Scholar 

  67. Brown BW, Banks E (1954) The sodium tungsten bronzes. J Am Chem Soc 76:963–966. https://doi.org/10.1021/ja01633a004

    Article  CAS  Google Scholar 

  68. Darlington CNW, Hriljac JA, Knight KS (2003) Structures of Na0.74WO3. Acta Cryst B 59:584–587. https://doi.org/10.1107/S0108768103015738

    Article  CAS  Google Scholar 

  69. Kihlborg L, Klug A (1973) The alkali metal distribution in the tetragonal potassium tungsten bronze structure. Chem Scr 3:207–211

    CAS  Google Scholar 

  70. Magnéli A, Virtanen AI, Olsen J et al (1953) Studies on the hexagonal tungsten bronzes of potassium, rubidium, and cesium. Acta Chem Scand 7:315–324. https://doi.org/10.3891/acta.chem.scand.07-0315

    Article  Google Scholar 

  71. Zhong Q, Dahn JR, Colbow K (1992) Lithium intercalation into WO3 and the phase diagram of LixWO3. Phys Rev B 46:2554–2560. https://doi.org/10.1103/PhysRevB.46.2554

    Article  CAS  Google Scholar 

  72. Takusagawa F, Jacobson RA (1976) Crystal structure studies of tetragonal sodium tungsten bronzes, NaxWO3. I. Na0.33WO3 and Na0.48WO3. J Solid State Chem 18:163–174. https://doi.org/10.1016/0022-4596(76)90092-X

    Article  CAS  Google Scholar 

  73. Clark NJ, Mart PL (1983) Vaporisation of tungsten bronzes II sodium and potassium tungsten bronzes. Mater Res Bull 18:951–958. https://doi.org/10.1016/0025-5408(83)90006-5

    Article  CAS  Google Scholar 

  74. Ikeuchi Y, Takatsu H, Tassel C et al (2017) High-pressure synthesis of fully occupied tetragonal and cubic tungsten bronze oxides. Angew Chem 129:5864–5867. https://doi.org/10.1002/ange.201701732

    Article  Google Scholar 

  75. Wang YC, Hsu CH, Hsu YY et al (2016) Structural distortion and electronic states of Rb doped WO3 by X-ray absorption spectroscopy. RSC Adv 6:107871–107877. https://doi.org/10.1039/C6RA21777J

    Article  CAS  Google Scholar 

  76. Adachi K, Asahi T (2012) Activation of plasmons and polarons in solar control cesium tungsten bronze and reduced tungsten oxide nanoparticles. J Mater Res 27:965–970. https://doi.org/10.1557/jmr.2012.25

    Article  CAS  Google Scholar 

  77. Reis KP, Ramanan A, Whittingham MS (1992) Synthesis of novel compounds with the pyrochlore and hexagonal tungsten bronze structures. J Solid State Chem 96:31–47. https://doi.org/10.1016/S0022-4596(05)80294-4

    Article  CAS  Google Scholar 

  78. Dickens PG, Halliwell AC, Murphy DJ, Whittingham MS (1971) Preparation and characterization of a hexagonal ammonium tungsten bronze phase (NH4)xWO3. Trans Faraday Soc 67:794–800. https://doi.org/10.1039/TF9716700794

    Article  CAS  Google Scholar 

  79. Wiseman PJ, Dickens PG (1976) Neutron diffraction studies of cubic tungsten bronzes. J Solid State Chem 17:91–100. https://doi.org/10.1016/0022-4596(76)90206-1

    Article  CAS  Google Scholar 

  80. Ikeuchi Y, Takatsu H, Tassel C et al (2019) Rattling behavior in a simple perovskite NaWO3. Inorg Chem 58:6790–6795. https://doi.org/10.1021/acs.inorgchem.9b00248

    Article  CAS  Google Scholar 

  81. Clarke R (1977) New sequence of structural phase transitions in NaxWO3. Phys Rev Lett 39:1550–1553. https://doi.org/10.1103/PhysRevLett.39.1550

    Article  CAS  Google Scholar 

  82. Tegg L, Cuskelly D, Keast VJ (2017) The sodium tungsten bronzes as plasmonic materials: fabrication, calculation and characterization. Mater Res Express 4:065703. https://doi.org/10.1088/2053-1591/aa6c40

    Article  CAS  Google Scholar 

  83. Straumanis ME, Hsu SS (1950) The lithium tungsten bronzes. J Am Chem Soc 72:4027–4030. https://doi.org/10.1021/ja01165a053

    Article  CAS  Google Scholar 

  84. Cava RJ, Roth RS, Siegrist T et al (1993) Cs8.5W15O48 and CSW2O6: members of a new homologous series of cesium tungsten oxides. J Solid State Chem 103:359–365. https://doi.org/10.1006/jssc.1993.1111

    Article  CAS  Google Scholar 

  85. Choi J, Moon K, Kang I et al (2015) Preparation of quaternary tungsten bronze nanoparticles by a thermal decomposition of ammonium metatungstate with oleylamine. Chem Eng J 281:236–242. https://doi.org/10.1016/j.cej.2015.06.101

    Article  CAS  Google Scholar 

  86. Triantafyllou ST, Christidis PC, Lioutas ChB (1997) X-ray and electron diffraction study of the tetragonal sodium tungsten bronze, Na0.10WO3, with distorted perovskite structure. J Solid State Chem 133:479–485. https://doi.org/10.1006/jssc.1997.7513

    Article  CAS  Google Scholar 

  87. Tegg L, Haberfehlner G, Kothleitner G et al (2021) Crystal structures, electrical properties, and electron energy-loss spectroscopy of the sodium and potassium tetragonal tungsten bronzes. J Alloy Compd 868:159200. https://doi.org/10.1016/j.jallcom.2021.159200

    Article  CAS  Google Scholar 

  88. Nakakura S, Arif AF, Machida K et al (2019) Cationic defect engineering for controlling the infrared absorption of hexagonal cesium tungsten bronze nanoparticles. Inorg Chem 58:9101–9107. https://doi.org/10.1021/acs.inorgchem.9b00642

    Article  CAS  Google Scholar 

  89. Okada M, Ono K, Yoshio S et al (2019) Oxygen vacancies and pseudo Jahn-Teller destabilization in cesium-doped hexagonal tungsten bronzes. J Am Ceram Soc 102:5386–5400. https://doi.org/10.1111/jace.16414

    Article  CAS  Google Scholar 

  90. Tang Z, Wang D, Chen B et al (2022) NayWO3–x nanosheet array via in situ Na intercalation for surface-enhanced Raman scattering detection of methylene blue. ACS Appl Nano Mater. https://doi.org/10.1021/acsanm.2c00862

    Article  Google Scholar 

  91. Paul S, Kumari S, Raj S (2016) Vacancy-induced in-gap states in sodium tungsten bronzes: density functional investigations. EPL 114:37011. https://doi.org/10.1209/0295-5075/114/37011

    Article  CAS  Google Scholar 

  92. Ishida K, Ikeuchi Y, Tassel C et al (2019) High-pressure synthesis of non-stoichiometric LixWO3 (0.5 ≤ x ≤ 1.0) with LiNbO3 structure. Inorganics 7:63. https://doi.org/10.3390/inorganics7050063

    Article  CAS  Google Scholar 

  93. Straumanis ME (1949) The sodium tungsten bronzes. I. Chemical Properties and Structure. J Am Chem Soc 71:679–683. https://doi.org/10.1021/ja01170a085

    Article  CAS  Google Scholar 

  94. Brimm EO, Brantley JC, Lorenz JH, Jellinek MH (1951) Sodium and potassium tungsten bronzes. J Am Chem Soc 73:5427–5432. https://doi.org/10.1021/ja01155a121

    Article  CAS  Google Scholar 

  95. Dickens PG, Neild DJ (1973) Thermochemistry of oxide bronzes. Part II. Sodium tungsten bronzes NaxWO3(x = 0.53 and 0.77). J Chem Soc Dalton Trans 1074–1076. https://doi.org/10.1039/DT9730001074

  96. Conroy LE (1977) The preparation and characterization of a sodium tungsten bronze: an inorganic experiment. J Chem Educ 54:45–49

    Article  CAS  Google Scholar 

  97. Mann M, Shter GE, Reisner GM, Grader GS (2007) Synthesis of tungsten bronze powder and determination of its composition. J Mater Sci 42:1010–1018. https://doi.org/10.1007/s10853-006-1384-x

    Article  CAS  Google Scholar 

  98. Guo J, Dong C, Yang L, Fu G (2005) A green route for microwave synthesis of sodium tungsten bronzes NaxWO3 (0<x<1). J Solid State Chem 178:58–63. https://doi.org/10.1016/j.jssc.2004.10.017

    Article  CAS  Google Scholar 

  99. Tegg L, Cuskelly D, Studer AJ et al (2021) Intermediate phases and reaction kinetics of the furnace-assisted synthesis of sodium tungsten bronze nanoparticles. J Phys Chem C 125:8185–8194. https://doi.org/10.1021/acs.jpcc.1c00161

    Article  CAS  Google Scholar 

  100. Tegg L, Cuskelly D, Keast VJ (2018) Bulk scale fabrication of sodium tungsten bronze nanoparticles for applications in plasmonics. Nanotechnology 29:40LT02. https://doi.org/10.1088/1361-6528/aad34b

    Article  CAS  Google Scholar 

  101. Tegg L, Haberfehlner G, Kothleitner G, Keast VJ (2020) Chemical homogeneity and optical properties of individual sodium tungsten bronze nanocubes. Micron 139:102926. https://doi.org/10.1016/j.micron.2020.102926

    Article  CAS  Google Scholar 

  102. Huang X, Bao J, Han Y et al (2018) Controllable synthesis and evolution mechanism of tungsten bronze nanocrystals with excellent optical performance for energy-saving glasses. J Mater Chem C 6:7783–7789. https://doi.org/10.1039/C8TC02740D

    Article  CAS  Google Scholar 

  103. Hou J, Zuo G, Shen G et al (2009) Hollow sodium tungsten bronze (Na 0.15 WO 3) nanospheres: preparation, characterization, and their adsorption properties. Nanoscale Res Lett 4:1241. https://doi.org/10.1007/s11671-009-9383-x

  104. Li L, Jiang F, Tu F et al (2017) Atomic-scale study of cation ordering in potassium tungsten bronze nanosheets. Adv Sci 4:1600537. https://doi.org/10.1002/advs.201600537

    Article  CAS  Google Scholar 

  105. Creative Commons — Attribution 4.0 International — CC BY 4.0. https://creativecommons.org/licenses/by/4.0/. Accessed 5 Aug 2022

  106. Zivkovic O, Yan C, Wagner MJ (2009) Tetragonal alkali metal tungsten bronze and hexagonal tungstate nanorods synthesized by alkalide reduction. J Mater Chem 19:6029–6033. https://doi.org/10.1039/B906888K

    Article  CAS  Google Scholar 

  107. Guo C, Yu H, Feng B et al (2015) Highly efficient ablation of metastatic breast cancer using ammonium-tungsten-bronze nanocube as a novel 1064 nm-laser-driven photothermal agent. Biomaterials 52:407–416. https://doi.org/10.1016/j.biomaterials.2015.02.054

    Article  CAS  Google Scholar 

  108. Tahmasebi N, Madmoli S, Farahnak P (2018) Synthesis of cesium tungsten bronze nanofibers with different crystalline phases. Mater Lett 211:161–164. https://doi.org/10.1016/j.matlet.2017.09.116

    Article  CAS  Google Scholar 

  109. Mattox TM, Bergerud A, Agrawal A, Milliron DJ (2014) Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals. Chem Mater 26:1779–1784. https://doi.org/10.1021/cm4030638

    Article  CAS  Google Scholar 

  110. Chamberland BL (1969) Preparation of bronzes by an alkali azide-metal oxide reaction. Inorg Chem 8:1183–1185. https://doi.org/10.1021/ic50075a032

    Article  CAS  Google Scholar 

  111. Conroy LE, Podolsky G (1968) Preparation of tungsten bronzes from metals halides. Inorg Chem 7:614–615. https://doi.org/10.1021/ic50061a049

    Article  CAS  Google Scholar 

  112. Jin L, Guo S, Cava RJ (2020) Sn0.24WO3 hexagonal tungsten bronze prepared via the metal chloride route. J Solid State Chem 121553. https://doi.org/10.1016/j.jssc.2020.121553

  113. Li X, Xie R, Cao X et al (2018) Synthesis of cubic sodium tungsten bronze NaxWO3 in air. J Am Ceram Soc 101:4458–4462. https://doi.org/10.1111/jace.15740

    Article  CAS  Google Scholar 

  114. Hirano T, Nakakura S, Rinaldi FG et al (2018) Synthesis of highly crystalline hexagonal cesium tungsten bronze nanoparticles by flame-assisted spray pyrolysis. Adv Powder Technol 29:2512–2520. https://doi.org/10.1016/j.apt.2018.07.001

    Article  CAS  Google Scholar 

  115. Qin J, Xing Y, Zhang G (2013) Synthesis of potassium tungsten bronze nanosheets by phase transformation. J Am Ceram Soc 96:1617–1621. https://doi.org/10.1111/jace.12173

    Article  CAS  Google Scholar 

  116. Moon K, Cho J-J, Lee Y-B et al (2013) Near infrared shielding properties of quaternary tungsten bronze nanoparticle Na0.11Cs0.22WO3. Bull Korean Chem Soc 34:731–734. https://doi.org/10.5012/bkcs.2013.34.3.731

    Article  CAS  Google Scholar 

  117. Tahmasebi N, Madmoli S (2018) Facile synthesis of a WO x /Cs y WO 3 heterostructured composite as a visible light photocatalyst. RSC Adv 8:7014–7021. https://doi.org/10.1039/C7RA12355H

    Article  CAS  Google Scholar 

  118. Zeng X, Zhou Y, Ji S et al (2015) The preparation of a high performance near-infrared shielding CsxWO3/SiO2 composite resin coating and research on its optical stability under ultraviolet illumination. J Mater Chem C 3:8050–8060. https://doi.org/10.1039/C5TC01411E

    Article  CAS  Google Scholar 

  119. Ran S, Liu J, Shi F et al (2019) Microstructure regulation of CsxWO3 nanoparticles by organic acid for improved transparent thermal insulation performance. Mater Res Bull 109:273–280. https://doi.org/10.1016/j.materresbull.2018.10.005

    Article  CAS  Google Scholar 

  120. Adachi K, Ota Y, Tanaka H et al (2013) Chromatic instabilities in cesium-doped tungsten bronze nanoparticles. J Appl Phys 114:194304. https://doi.org/10.1063/1.4831950

    Article  CAS  Google Scholar 

  121. Tsang C, Lai SY, Manthiram A (1997) Reduction of aqueous Na2WO4 by NaBH4 at ambient temperatures to obtain lower valent tungsten oxides. Inorg Chem 36:2206–2210. https://doi.org/10.1021/ic9610039

    Article  CAS  Google Scholar 

  122. Liu G, Wang S, Nie Y et al (2013) Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermal conversion behavior. J Mater Chem A 1:10120–10129. https://doi.org/10.1039/C3TA11479A

    Article  CAS  Google Scholar 

  123. Lu H, Li H, Chen Y, Liu H (2018) A facile hydrothermal method to synthesize ammonium tungsten bronze nanoplatelets for NIR absorption. IOP Conf Ser: Mater Sci Eng 382:022062. https://doi.org/10.1088/1757-899X/382/2/022062

    Article  Google Scholar 

  124. Zheng Z, Yan B, Zhang J et al (2008) Potassium tungsten bronze nanowires: polarized micro-Raman scattering of individual nanowires and electron field emission from nanowire films. Adv Mater 20:352–356. https://doi.org/10.1002/adma.200701514

    Article  CAS  Google Scholar 

  125. Zheng B, Han Z, Wu G et al Synthesis of near infrared-activatable KxWO3 nanorods for photothermal therapy. Mater Lett. https://doi.org/10.1016/j.matlet.2017.10.093

  126. Guo C, Yin S, Zhang P et al (2010) Novel synthesis of homogenous CsxWO3 nanorods with excellent NIR shielding properties by a water controlled-release solvothermal process. J Mater Chem 20:8227–8229. https://doi.org/10.1039/C0JM01972K

    Article  CAS  Google Scholar 

  127. Eyassu T, Hsaio T-J, Lin C-T (2015) Facile solvothermal synthesis of NIR absorbing Cs x WO 3 nanorods by benzyl alcohol route. Mater Res Express 2:015016. https://doi.org/10.1088/2053-1591/2/1/015016

    Article  CAS  Google Scholar 

  128. Li G, Guo C, Yan M, Liu S (2016) CsxWO3 nanorods: realization of full-spectrum-responsive photocatalytic activities from UV, visible to near-infrared region. Appl Catal B 183:142–148. https://doi.org/10.1016/j.apcatb.2015.10.039

    Article  CAS  Google Scholar 

  129. Liu G, Xu J, Li R (2020) Facile synthesis of Cs0.3WO3 nanofibers by hydrothermal method and their optical properties. Opt Mater 107:110147. https://doi.org/10.1016/j.optmat.2020.110147

    Article  CAS  Google Scholar 

  130. Kim J, Agrawal A, Krieg F et al (2016) The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals. Nano Lett 16:3879–3884. https://doi.org/10.1021/acs.nanolett.6b01390

    Article  CAS  Google Scholar 

  131. Ni D, Zhang J, Wang J et al (2017) Oxygen vacancy enables markedly enhanced magnetic resonance imaging-guided photothermal therapy of a Gd3+-doped contrast agent. ACS Nano 11:4256–4264. https://doi.org/10.1021/acsnano.7b01297

    Article  CAS  Google Scholar 

  132. Azimirad R, Akhavan O, Moshfegh AZ (2009) Simple method to synthesize NaxWO3 nanorods and nanobelts. J Phys Chem C 113:13098–13102. https://doi.org/10.1021/jp902189h

    Article  CAS  Google Scholar 

  133. Xin Y, Cao X, Bao S et al (2017) Two-step fabrication of NaxWO3 thin film via oxygen-vacancy-induced effect for energy efficient applications. Cryst Eng Comm 19:3931–3938. https://doi.org/10.1039/C7CE00896A

    Article  CAS  Google Scholar 

  134. Long CS, Lu H-H, Lii D-F, Huang J-L (2015) Effects of annealing on near-infrared shielding properties of Cs-doped tungsten oxide thin films deposited by electron beam evaporation. Surf Coat Technol 284:75–79. https://doi.org/10.1016/j.surfcoat.2015.06.078

    Article  CAS  Google Scholar 

  135. Wu P-J, Brahma S, Lu H-H, Huang J-L (2020) Synthesis of cesium tungsten bronze by a solution-based chemical route and the NIR shielding properties of cesium tungsten bronze thin films. Appl Phys A 126:98. https://doi.org/10.1007/s00339-020-3291-4

    Article  CAS  Google Scholar 

  136. Mamak M, Choi SY, Stadler U et al (2010) Thermal plasma synthesis of tungsten bronze nanoparticles for near infra-red absorption applications. J Mater Chem 20:9855–9857. https://doi.org/10.1039/C0JM02169E

    Article  CAS  Google Scholar 

  137. Shanks HR, Sidles PH, Danielson GC (1963) Electrical properties of the tungsten bronzes. In: Ward R (ed) Nonstoichiometric Compounds. American Chemical Society, pp 237–245

  138. Huibregtse EJ, Barker DB, Danielson GC (1951) Electrical properties of sodium tungsten bronze. Phys Rev 84:142–144. https://doi.org/10.1103/PhysRev.84.142

    Article  CAS  Google Scholar 

  139. Muhlestein LD, Danielson GC (1967) Effects of ordering on the transport properties of sodium tungsten bronze. Phys Rev 158:825–832. https://doi.org/10.1103/PhysRev.158.825

    Article  CAS  Google Scholar 

  140. Brown BW, Banks E (1951) Conductivity of the sodium tungsten bronzes. Phys Rev 84:609–610. https://doi.org/10.1103/PhysRev.84.609

    Article  CAS  Google Scholar 

  141. Gardner WR, Danielson GC (1954) Electrical resistivity and hall coefficient of sodium tungsten bronze. Phys Rev 93:46–51. https://doi.org/10.1103/PhysRev.93.46

    Article  CAS  Google Scholar 

  142. Ellerbeck LD, Shanks HR, Sidles PH, Danielson GC (1961) Electrical resistivity of cubic sodium tungsten bronze. J Chem Phys 35:298–302. https://doi.org/10.1063/1.1731904

    Article  CAS  Google Scholar 

  143. Schwarz K, Blaha P, Trickey SB (2010) Electronic structure of solids with WIEN2k. Mol Phys 108:3147–3166. https://doi.org/10.1080/00268976.2010.506451

    Article  CAS  Google Scholar 

  144. Hjelm A, Granqvist CG, Wills JM (1996) Electronic structure and optical properties of WO3, LiWO3, NaWO3, and HWO3. Phys Rev B 54:2436–2445. https://doi.org/10.1103/PhysRevB.54.2436

    Article  CAS  Google Scholar 

  145. Ingham B, Hendy SC, Chong SV, Tallon JL (2005) Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems. Phys Rev B 72:075109. https://doi.org/10.1103/PhysRevB.72.075109

    Article  CAS  Google Scholar 

  146. Chazalviel J-N, Campagna M, Wertheim GK, Shanks HR (1977) Final-state effects in the x-ray photoelectron spectra of cubic sodium-tungsten bronzes. Phys Rev B 16:697–705. https://doi.org/10.1103/PhysRevB.16.697

    Article  CAS  Google Scholar 

  147. Bullett DW (1983) A theoretical study of the x-dependence of the conduction-band density of states in metallic sodium tungsten bronzes NaxWO3. Solid State Commun 46:575–577. https://doi.org/10.1016/0038-1098(83)90695-6

    Article  CAS  Google Scholar 

  148. Christensen NE, Mackintosh AR (1987) Electronic structure of cubic sodium tungsten bronze. Phys Rev B 35:8246–8248. https://doi.org/10.1103/PhysRevB.35.8246

    Article  CAS  Google Scholar 

  149. Raj S, Matsui H, Souma S et al (2007) Electronic structure of sodium tungsten bronzes NaxWO3 by high-resolution angle-resolved photoemission spectroscopy. Phys Rev B 75:155116. https://doi.org/10.1103/PhysRevB.75.155116

    Article  CAS  Google Scholar 

  150. Höchst H, Bringans RD, Shanks HR (1982) Electronic structure of NaxWO3: A photoemission study covering the entire concentration range. Phys Rev B 26:1702–1712. https://doi.org/10.1103/PhysRevB.26.1702

    Article  Google Scholar 

  151. Wolfram T, Sutcu L (1985) x dependence of the electronic properties of cubic NaxWO3. Phys Rev B 31:7680–7687. https://doi.org/10.1103/PhysRevB.31.7680

    Article  CAS  Google Scholar 

  152. Chen B, Laverock J, Piper LFJ et al (2013) The band structure of WO3 and non-rigid-band behaviour in Na0.67WO3 derived from soft x-ray spectroscopy and density functional theory. J Phys Condens Matter 25:165501. https://doi.org/10.1088/0953-8984/25/16/165501

    Article  CAS  Google Scholar 

  153. Guo J, Dong C, Yang L et al (2006) Crystal structure and electrical properties of CaxWO3 (0.01 ≤ x ≤ 0.15) prepared by hybrid microwave synthesis. Mater Res Bull 41:655–661. https://doi.org/10.1016/j.materresbull.2005.08.032

    Article  CAS  Google Scholar 

  154. Fan R, Chen XH, Gui Z et al (2000) Chemical synthesis and electronic conduction properties of sodium and potassium tungsten bronzes. J Phys Chem Solids 61:2029–2033. https://doi.org/10.1016/S0022-3697(00)00202-X

    Article  CAS  Google Scholar 

  155. Guo J, Dong C, Yang L et al (2007) Crystal structure and electrical properties of new tungsten bronzes: BxWO3 (0.01 ≤ x ≤ 0.08). Mater Res Bull 42:1384–1389. https://doi.org/10.1016/j.materresbull.2006.09.023

    Article  CAS  Google Scholar 

  156. Owen JF, Teegarden KJ, Shanks HR (1978) Optical properties of the sodium-tungsten bronzes and tungsten trioxide. Phys Rev B 18:3827–3837. https://doi.org/10.1103/PhysRevB.18.3827

    Article  CAS  Google Scholar 

  157. Tegg L, Cuskelly D, Keast VJ (2017) Plasmon responses in the sodium tungsten bronzes. Plasmonics 13:437–444. https://doi.org/10.1007/s11468-017-0528-y

    Article  CAS  Google Scholar 

  158. Kielwein M, Saiki K, Roth G et al (1995) High-energy electron-energy-loss study of sodium-tungsten bronzes. Phys Rev B 51:10320–10335. https://doi.org/10.1103/PhysRevB.51.10320

    Article  CAS  Google Scholar 

  159. Hussain A, Gruehn R, Rüscher CH (1997) Crystal growth of alkali metal tungsten bronzes MxWO3 (M = K, Rb, Cs), and their optical properties. J Alloy Compd 246:51–61. https://doi.org/10.1016/S0925-8388(96)02470-X

    Article  CAS  Google Scholar 

  160. Xue Y, Zhang Y, Zhang P (2009) Theory of the color change of NaxWO3 as a function of Na-charge doping. Phys Rev B 79:205113. https://doi.org/10.1103/PhysRevB.79.205113

    Article  CAS  Google Scholar 

  161. Lynch DW, Rosei R, Weaver JH, Olson CG (1973) The optical properties of some alkali metal tungsten bronzes from 0.1 to 38 eV. J Solid State Chem 8:242–252. https://doi.org/10.1016/0022-4596(73)90092-3

    Article  CAS  Google Scholar 

  162. Green M, Hussain Z (1993) Optical properties of lithium tungsten bronze thin films. J Appl Phys 74:3451–3458. https://doi.org/10.1063/1.354545

    Article  CAS  Google Scholar 

  163. Tian G, Zhang X, Zheng X et al (2014) Multifunctional RbxWO3 nanorods for simultaneous combined chemo-photothermal therapy and photoacoustic/CT imaging. Small 10:4160–4170. https://doi.org/10.1002/smll.201401237

    Article  CAS  Google Scholar 

  164. Wang T, Xiong Y, Li R, Cai H (2016) Dependence of infrared absorption properties on the Mo doping contents in MxWO3 with various alkali metals. New J Chem 40:7476–7481. https://doi.org/10.1039/C6NJ00408C

    Article  CAS  Google Scholar 

  165. Sato Y, Terauchi M, Adachi K (2012) High energy-resolution electron energy-loss spectroscopy study on the near-infrared scattering mechanism of Cs0.33WO3 crystals and nanoparticles. J Appl Phys 112:074308. https://doi.org/10.1063/1.4752867

    Article  CAS  Google Scholar 

  166. Dietz RE, Campagna M, Chazalviel JN, Shanks HR (1978) Inelastic electron scattering by intra- and interband plasmons in rhenium trioxide, tungsten trioxide, and some tungsten bronzes. Phys Rev B 17:3790–3800. https://doi.org/10.1103/PhysRevB.17.3790

    Article  CAS  Google Scholar 

  167. Sato YK, Terauchi M, Adachi K (2019) Anisotropic plasmons due to carrier electrons in Cs-doped hexagonal WO3 studied by momentum transfer resolved electron energy-loss spectroscopy. J Appl Phys 126:185107. https://doi.org/10.1063/1.5115068

    Article  CAS  Google Scholar 

  168. Yoshio S, Adachi K (2019) Polarons in reduced cesium tungsten bronzes studied using the DFT + U method. Mater Res Express 6:026548. https://doi.org/10.1088/2053-1591/aaef62

    Article  CAS  Google Scholar 

  169. Machida K, Adachi K (2016) Ensemble inhomogeneity of dielectric functions in Cs-doped tungsten oxide nanoparticles. J Phys Chem C 120:16919–16930. https://doi.org/10.1021/acs.jpcc.6b02936

    Article  CAS  Google Scholar 

  170. Zimmer A, Gilliot M, Tresse M et al (2019) Coloration mechanism of electrochromic NaxWO3 thin films. Opt Lett, OL 44:1104–1107. https://doi.org/10.1364/OL.44.001104

    Article  CAS  Google Scholar 

  171. Hohenester U (2014) Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput Phys Commun 185:1177–1187. https://doi.org/10.1016/j.cpc.2013.12.010

    Article  CAS  Google Scholar 

  172. Nicoletti O, de la Peña F, Leary RK et al (2013) Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502:80–84. https://doi.org/10.1038/nature12469

    Article  CAS  Google Scholar 

  173. Cong S, Geng F, Zhao Z (2016) Tungsten oxide materials for optoelectronic applications. Adv Mater 28:10518–10528. https://doi.org/10.1002/adma.201601109

    Article  CAS  Google Scholar 

  174. Lee Y, Lee T, Jang W, Soon A (2016) Unraveling the intercalation chemistry of hexagonal tungsten bronze and its optical responses. Chem Mater 28:4528–4535. https://doi.org/10.1021/acs.chemmater.5b03980

    Article  CAS  Google Scholar 

  175. Wang F, Shen YR (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97:206806. https://doi.org/10.1103/PhysRevLett.97.206806

    Article  CAS  Google Scholar 

  176. Lalisse A, Tessier G, Plain J, Baffou G (2015) Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion. J Phys Chem C 119:25518–25528. https://doi.org/10.1021/acs.jpcc.5b09294

    Article  CAS  Google Scholar 

  177. Arnold MD, Blaber MG (2009) Optical performance and metallic absorption in nanoplasmonic systems. Opt Express 17:3835. https://doi.org/10.1364/OE.17.003835

    Article  CAS  Google Scholar 

  178. Chowdhury R, Tegg L, Keast VJ et al (2021) Plasmonic enhancement of aqueous processed organic photovoltaics. RSC Adv 11:19000–19011. https://doi.org/10.1039/D1RA02328D

    Article  CAS  Google Scholar 

  179. Kumar GVP (2012) Plasmonic nano-architectures for surface enhanced Raman scattering: a review. J Nanophoton 6:064503–064511. https://doi.org/10.1117/1.JNP.6.064503

    Article  CAS  Google Scholar 

  180. Cong S, Wang Z, Gong W et al (2019) Electrochromic semiconductors as colorimetric SERS substrates with high reproducibility and renewability. Nat Commun 10:678. https://doi.org/10.1038/s41467-019-08656-6

    Article  CAS  Google Scholar 

  181. Fusco Z, Taheri M, Bo R et al (2020) Non-periodic epsilon-near-zero metamaterials at visible wavelengths for efficient non-resonant optical sensing. Nano Lett 20:3970–3977. https://doi.org/10.1021/acs.nanolett.0c01095

    Article  CAS  Google Scholar 

  182. Tegg L, Keast VJ (2020) NaxWO3+TiO2 nanocomposites as plasmonic photocatalysts for the degradation of organic dyes. Nano Express 1:020008. https://doi.org/10.1088/2632-959X/aba131

    Article  Google Scholar 

  183. Wang B, Wang Q, Zhu Y et al (2019) A photo-/thermo-dual-responsible CsxWO3/PNIPAM composite hydrogel for energy-efficient windows. Mater Res Express 6:085708. https://doi.org/10.1088/2053-1591/ab2168

    Article  CAS  Google Scholar 

  184. Zhou Y, Li N, Xin Y et al (2017) Cs x WO 3 nanoparticle-based organic polymer transparent foils: low haze, high near infrared-shielding ability and excellent photochromic stability. J Mater Chem C 5:6251–6258. https://doi.org/10.1039/C7TC01616F

    Article  CAS  Google Scholar 

  185. Yao Y, Chen Z, Wei W et al (2020) Cs0.32WO3/PMMA nanocomposite via in-situ polymerization for energy saving windows. Sol Energy Mater Sol Cells 215:110656. https://doi.org/10.1016/j.solmat.2020.110656

    Article  CAS  Google Scholar 

  186. Llordés A, Garcia G, Gazquez J, Milliron DJ (2013) Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500:323–326. https://doi.org/10.1038/nature12398

    Article  CAS  Google Scholar 

  187. Buonsanti R, Llordes A, Aloni S et al (2011) Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett 11:4706–4710. https://doi.org/10.1021/nl203030f

    Article  CAS  Google Scholar 

  188. Takeda H, Kuno H, Adachi K (2008) Solar control dispersions and coatings with rare-earth hexaboride nanoparticles. J Am Ceram Soc 91:2897–2902. https://doi.org/10.1111/j.1551-2916.2008.02512.x

    Article  CAS  Google Scholar 

  189. Guo C, Yin S, Sato T (2011) Synthesis of one-dimensional hexagonal sodium tungsten oxide and its near-infrared shielding property. Nanosci Nanotechnol Lett 3:413–416. https://doi.org/10.1166/nnl.2011.1182

    Article  CAS  Google Scholar 

  190. Lee WH, Hwang H, Moon K et al (2013) Increased environmental stability of a tungsten bronze NIR-absorbing window. Fibers Polym 14:2077–2082. https://doi.org/10.1007/s12221-013-2077-0

    Article  CAS  Google Scholar 

  191. Ran S, Liu J, Shi F et al (2018) Greatly improved heat-shielding performance of KxWO3 by trace Pt doping for energy-saving window glass applications. Sol Energy Mater Sol Cells 174:342–350. https://doi.org/10.1016/j.solmat.2017.08.013

    Article  CAS  Google Scholar 

  192. Guo C, Yin S, Huang L, Sato T (2011) Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property. ACS Appl Mater Interfaces 3:2794–2799. https://doi.org/10.1021/am200631e

    Article  CAS  Google Scholar 

  193. Wu X, Wang J, Zhang G et al (2017) Series of MxWO3/ZnO (M = K, Rb, NH4) nanocomposites: combination of energy saving and environmental decontamination functions. Appl Catal B 201:128–136. https://doi.org/10.1016/j.apcatb.2016.08.030

    Article  CAS  Google Scholar 

  194. Liu T, Liu B, Wang J et al (2016) Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance. Sci Rep 6:27373. https://doi.org/10.1038/srep27373

    Article  CAS  Google Scholar 

  195. Cai L, Wu X, Gao Q, Fan Y (2018) Effect of morphology on the near infrared shielding property and thermal performance of K0.3WO3 blue pigments for smart window applications. Dyes Pigm 156:33–38. https://doi.org/10.1016/j.dyepig.2018.03.074

    Article  CAS  Google Scholar 

  196. Xu Q, Xiao L, Ran J et al (2018) Cs0.33WO3 as a high-performance transparent solar radiation shielding material for windows. J Appl Phys 124:193102. https://doi.org/10.1063/1.5050041

    Article  CAS  Google Scholar 

  197. Asakura Y, Anada Y, Hamanaka R et al (2018) Multifunctionality in coating films including Nb-doped TiO2 and CsxWO3: near infrared shielding and photocatalytic properties. Nanotechnology 29:224001. https://doi.org/10.1088/1361-6528/aab600

    Article  CAS  Google Scholar 

  198. Li C, Kang L, Zhu Y et al (2017) Low-temperature atmosphere-free molten salt synthesis of NIR-shielding CsxWO3. Nano Adv 2:47–52. https://doi.org/10.22180/na216

    Article  Google Scholar 

  199. Chen Y, Zeng X, Zhou Y et al (2017) Core-shell structured CsxWO3@ZnO with excellent stability and high performance on near-infrared shielding. Ceram Int 44:2738–2744. https://doi.org/10.1016/j.ceramint.2017.11.004

    Article  CAS  Google Scholar 

  200. Liu J, Xu Q, Shi F et al (2014) Dispersion of Cs0.33WO3 particles for preparing its coatings with higher near infrared shielding properties. Appl Surf Sci 309:175–180. https://doi.org/10.1016/j.apsusc.2014.05.005

    Article  CAS  Google Scholar 

  201. Lee SY, Kim JY, Lee JY et al (2014) Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer. Nanoscale Res Lett 9:294. https://doi.org/10.1186/1556-276X-9-294

    Article  CAS  Google Scholar 

  202. Xu Q, Liu JX, Shi F et al (2013) Effects of annealing in different atmosphere on the near-infrared shielding properties of CsxWO3 particles. Adv Mater Res 712–715:284–287. https://doi.org/10.4028/www.scientific.net/AMR.712-715.284

    Article  CAS  Google Scholar 

  203. Luo JY, Liu JX, Shi F et al (2013) Synthesis of sodium tungsten bronze via hydrothermal method assisted by citric acid. Adv Mater Res 712–715:280–283. https://doi.org/10.4028/www.scientific.net/AMR.712-715.280

    Article  CAS  Google Scholar 

  204. Yang C, Chen J-F, Zeng X et al (2016) Enhanced near-infrared shielding ability of (Li, K)-codoped WO 3 for smart windows: DFT prediction validated by experiment. Nanotechnology 27:075203. https://doi.org/10.1088/0957-4484/27/7/075203

    Article  CAS  Google Scholar 

  205. Peng L, Chen W, Su B et al (2019) CsxWO3 nanosheet-coated cotton fabric with multiple functions: UV/NIR shielding and full-spectrum-responsive self-cleaning. Appl Surf Sci 475:325–333. https://doi.org/10.1016/j.apsusc.2018.12.279

    Article  CAS  Google Scholar 

  206. Liang X, Guo C, Chen M et al (2017) A roll-to-roll process for multi-responsive soft-matter composite films containing CsxWO3 nanorods for energy-efficient smart window applications. Nanoscale Horiz 2:319–325. https://doi.org/10.1039/C7NH00105C

    Article  CAS  Google Scholar 

  207. Chen Y-C, YANG P-H, Lin C-C et al (2016) Infrared absorption material, method for fabricating the same, and thermal isolation structure employing the same. US Patent 9434652B2, 6 September 2016

  208. Machida K, Nakayama H (2018) Heat ray-shielding film, heat ray-shielding laminated transparent base material, heat ray-shielding resin sheet material, automobile and building. US Patent 9868665B2, 16 January 2018

  209. Okada M, Fukuyama H (2019) Near-infrared absorbing fine particle dispersion liquid and method for producing the same. US Patent 10442948B2, 15 October 2019

  210. Mamak MA, Lehmann U, Stadler UL, Knischka RS (2019) Composition comprising potassium cesium tungsten bronze particles and use of these particles. European Patent EP2451746B1, 30 June 2010

  211. Ma X-C, Dai Y, Yu L, Huang B-B (2016) Energy transfer in plasmonic photocatalytic composites. Light Sci Appl 5:e16017. https://doi.org/10.1038/lsa.2016.17

    Article  CAS  Google Scholar 

  212. Yang M-Q, Gao M, Hong M, Ho GW (2018) Visible-to-NIR photon harvesting: progressive engineering of catalysts for solar-powered environmental purification and fuel production. Adv Mater 1802894. https://doi.org/10.1002/adma.201802894

  213. Wang L, Zhan J, Fan W et al (2010) Microcrystalline sodium tungsten bronze nanowire bundles as efficient visible light-responsive photocatalysts. Chem Commun 46:8833–8835. https://doi.org/10.1039/C0CC03660A

    Article  CAS  Google Scholar 

  214. Kalanur SS, Yoo I-H, Cho IS, Seo H (2019) Niobium incorporated WO3 nanotriangles: band edge insights and improved photoelectrochemical water splitting activity. Ceram Int 45:8157–8165. https://doi.org/10.1016/j.ceramint.2019.01.117

    Article  CAS  Google Scholar 

  215. Kalanur SS, Seo H (2019) Aligned nanotriangles of tantalum doped tungsten oxide for improved photoelectrochemical water splitting. J Alloy Compd 785:1097–1105. https://doi.org/10.1016/j.jallcom.2019.01.226

    Article  CAS  Google Scholar 

  216. Chiang TH, Zhou Z-X, Hsu J-W (2019) The photocatalytic performance of cesium tungsten oxide particles under visible-light irradiation and preparation using a glycothermal process. J Taiwan Inst Chem Eng 95:393–404. https://doi.org/10.1016/j.jtice.2018.08.005

    Article  CAS  Google Scholar 

  217. Hira SA, Hui HS, Yusuf M, Park KH (2020) Silver nanoparticles deposited on metal tungsten bronze as a reusable catalyst for the highly efficient catalytic hydrogenation/reduction of 4-nitrophenol. Catal Commun 141:106011. https://doi.org/10.1016/j.catcom.2020.106011

  218. Shi A, Li H, Yin S et al (2018) Photocatalytic NH3 versus H2 evolution over g-C3N4/CsxWO3: O2 and methanol tipping the scale. Appl Catal B 235:197–206. https://doi.org/10.1016/j.apcatb.2018.04.081

    Article  CAS  Google Scholar 

  219. Gao Q, Wu X, Cai L (2019) Dual functionality of K0.3WO3/Ag2O nanocomposites for smart window: energy saving and visible photocatalytic self-cleaning performance. Sol Energy Mater Sol Cells 196:111–118. https://doi.org/10.1016/j.solmat.2019.03.042

    Article  CAS  Google Scholar 

  220. Cui G, Wang W, Ma M et al (2015) IR-driven photocatalytic water splitting with WO2–NaxWO3 hybrid conductor material. Nano Lett 15:7199–7203. https://doi.org/10.1021/acs.nanolett.5b01581

    Article  CAS  Google Scholar 

  221. Zhao J, Liu C, Wang H et al (2020) Carbon dots modified WO2-NaxWO3 composite as UV-Vis-NIR broad spectrum-driven photocatalyst for overall water splitting. Catal Today 340:152–160. https://doi.org/10.1016/j.cattod.2018.11.028

    Article  CAS  Google Scholar 

  222. Li N, Gao X, Fan F et al (2020) Insight into the relationship of the high photocatalytic performance and double photochromic activity of Z-scheme CsxWO3/AgBr heterostructures under UV-Vis-NIR light utilization. Appl Surf Sci 147038. https://doi.org/10.1016/j.apsusc.2020.147038

  223. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2008) Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23:217. https://doi.org/10.1007/s10103-007-0470-x

    Article  Google Scholar 

  224. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nano 4:710–711. https://doi.org/10.1038/nnano.2009.326

    Article  CAS  Google Scholar 

  225. Zhang Y, Li B, Cao Y et al (2015) Na 0.3 WO 3 nanorods: a multifunctional agent for in vivo dual-model imaging and photothermal therapy of cancer cells. Dalton Trans 44:2771–2779. https://doi.org/10.1039/C4DT02927E

    Article  CAS  Google Scholar 

  226. Gao H, Fang X, Xiang J et al (2018) Development of tungsten bronze nanorods for redox-enhanced photoacoustic imaging-guided photothermal therapy of tumors. RSC Adv 8:26713–26719. https://doi.org/10.1039/C8RA04096F

    Article  CAS  Google Scholar 

  227. Yan H, Gao L, Liao Y et al (2022) Hexagonal NaxWO3 nanocrystals with reversible valence states for microwave thermal and chemodynamic combined cancer therapy. Chem Eng J 136869. https://doi.org/10.1016/j.cej.2022.136869

  228. Zheng B, Han Z, Wu G et al (2018) Synthesis of near infrared-activatable KxWO3 nanorods for photothermal therapy. Mater Lett 212:194–197. https://doi.org/10.1016/j.matlet.2017.10.093

    Article  CAS  Google Scholar 

  229. Xu W, Meng Z, Yu N et al (2015) PEGylated Cs x WO 3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells. RSC Adv 5:7074–7082. https://doi.org/10.1039/C4RA15524F

    Article  CAS  Google Scholar 

  230. Cheng Y, Yang F, Xiang G et al (2019) Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy. Nano Lett 19:1179–1189. https://doi.org/10.1021/acs.nanolett.8b04618

    Article  CAS  Google Scholar 

  231. Fang Z, Wang B, Wang W et al (2019) Ammonium ion intercalated tungsten oxide nanorods with high photothermal conversion efficiency and low cytotoxicity. Eur J Inorg Chem 2019:245–249. https://doi.org/10.1002/ejic.201801192

    Article  CAS  Google Scholar 

  232. Hou J, Du Y, Zhang T et al (2019) PEGylated (NH4)xWO3 nanorod mediated rapid photonecrosis of breast cancer cells. Nanoscale 11:10209–10219. https://doi.org/10.1039/C9NR01077G

    Article  CAS  Google Scholar 

  233. Guo C, Yin S, Yu H et al (2013) Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption. Nanoscale 5:6469–6478. https://doi.org/10.1039/C3NR01025B

    Article  CAS  Google Scholar 

  234. Chen C-A, Hsiao H-C, Cheng Y-H et al (2022) Phototoxicity effects of NIR-irradiated cesium tungsten oxide (Cs0.33WO3) nanoparticles on zebrafish embryos: a direct immersion study. Toxicol Rep. https://doi.org/10.1016/j.toxrep.2022.05.006

Download references

Acknowledgements

The authors acknowledge D. Cuskelly and E. Kisi of The University of Newcastle for their insightful discussions, D. R. G. Mitchell of the University of Wollongong Electron Microscope Centre for their assistance in collecting the EELS data, and C. D. Geddes of the Plasmonics editorial team for soliciting the initial version of this manuscript.

Funding

Part of this work was funded by the Australian Research Council’s Discovery Projects funding scheme (DP120102545).

Author information

Authors and Affiliations

Authors

Contributions

L.T and V.J.K. contributed equally to the writing of the manuscript. L.T. prepared the figures. L.T. and V.J.K. edited and reviewed the manuscript equally.

Corresponding author

Correspondence to Levi Tegg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tegg, L., Keast, V.J. A Review of Alkali Tungsten Bronze Nanoparticles for Applications in Plasmonics. Plasmonics 18, 49–71 (2023). https://doi.org/10.1007/s11468-022-01749-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01749-x

Keywords

Navigation