Skip to main content
Log in

D-Shaped Photonic Crystal Fiber Plasmonic Sensor Based on Silver-Titanium Dioxide Composite Micro-grating

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A D-shaped photonic crystal fiber surface plasmon resonance (PCF-SPR) sensor is proposed for highly sensitive liquid refractive index sensing. Taking sensing sensitivity into consideration, silver-titanium dioxide (Ag-TiO2) composite micro-grating is introduced and SPR is excited within Ag-TiO2 composite micro-grating at the flat D-shaped PCF surface. The finite element method (FEM) based on COMSOL is applied to analyzed numerically response characteristics of the D-shaped sensor, which was research dependent on wavelength and amplitude interrogation method. The results displayed that designed sensor reached excellent amplitude sensitivity of 2245 RIU−1 and wavelength sensitivity of 10,300 nm/RIU for liquid refractive index varying between 1.33 and 1.40. And it also shows that the maximum figure of merit was 480 RIU−1 for proposed sensor after optimization of structural parameters, which has a great prospect in the biological detection and chemical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All authors make sure that all data and materials as well as software application support their published claims and comply with field standards.

References

  1. Chen Y, Ming H (2012) Review of surface plasmon resonance and localized surface plasmon resonance sensor. Photonic Sensors 2(1):37–49. https://doi.org/10.1007/s13320-011-0051-2

    Article  Google Scholar 

  2. Islam MS, Sultana J, Ahmmed Aoni R, Habib MS, Dinovitser A, Ng BW, Abbott D (2019) Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification. Opt Lett 44(5):1134–1137. https://doi.org/10.1364/OL.44.001134

    Article  CAS  PubMed  Google Scholar 

  3. Paul D, Biswas RJO, Technology L (2018) Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain. Opt Laser Technol 101:379–387. https://doi.org/10.1016/j.optlastec.2017.11.040

    Article  CAS  Google Scholar 

  4. Bo L, Nylander C, Lunström IJS (1983) Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 4:299–304

    Article  Google Scholar 

  5. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  Google Scholar 

  6. Rifat AA, Ahmed R, Mahdiraji GA, Adikan FRM (2017) Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR. IEEE Sens J 17(9):2776–2783. https://doi.org/10.1109/jsen.2017.2677473

    Article  CAS  Google Scholar 

  7. Dash JN, Jha RJP (2016) Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR. Plasmonics 11(6):1505–1509. https://doi.org/10.1007/s11468-016-0203-8

    Article  CAS  Google Scholar 

  8. Islam SM, Sultana J, Ahmed K, Rakibul M, Dinovitser A, Wai-Him BJIsj, (2018) A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens J 18(2):575–582. https://doi.org/10.1109/JSEN.2017.2775642

    Article  CAS  Google Scholar 

  9. Gao D, Guan C, Wen Y, Zhong X, Yuan LJOC (2014) Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Optics Communications 313:94–98. https://doi.org/10.1016/j.optcom.2013.10.015

    Article  CAS  Google Scholar 

  10. Rifat AA, Haider F, Ahmed R, Mahdiraji GA, Mahamd Adikan FR, Miroshnichenko AE (2018) Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt Lett 43(4):891–894. https://doi.org/10.1364/OL.43.000891

    Article  CAS  PubMed  Google Scholar 

  11. Haider F, Aoni RA, Ahmed R, Miroshnichenko AE (2018) Highly amplitude-sensitive photonic-crystal-fiber-based plasmonic sensor. J Opt Soc Am B 35(11):2816–2821. https://doi.org/10.1364/JOSAB.35.002816

    Article  CAS  Google Scholar 

  12. Islam MS, Cordeiro CMB, Sultana J, Aoni RA, Feng S, Ahmed R, Dorraki M, Dinovitser A, Ng BW-H, Abbott D (2019) A Hi-Bi ultra-sensitive surface plasmon resonance fiber sensor. IEEE Access 7:79085–79094. https://doi.org/10.1109/access.2019.2922663

    Article  Google Scholar 

  13. Rifat A, Mahdiraji G, Chow D, Shee Y, Ahmed R, Adikan FJS (2015) Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5):11499–11510. https://doi.org/10.3390/s150511499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Luan N, Ran W, Lv W, Yao JJOE (2015) Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt Express 23(7):8576–8582. https://doi.org/10.1364/OE.23.008576

    Article  CAS  PubMed  Google Scholar 

  15. Haque E, Hossain MA, Ahmed F, Namihira YJISJ (2018) Surface plasmon resonance sensor based on modified D-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens J 99:1–7. https://doi.org/10.1109/JSEN.2018.2865514

    Article  Google Scholar 

  16. Haque E, Hossain MA, Namihira Y, Ahmed FJAO (2019) Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl Opt 58(6):1547–1554. https://doi.org/10.1364/AO.58.001547

    Article  CAS  PubMed  Google Scholar 

  17. Monfared YEJP (2019) Refractive index sensor based on surface plasmon resonance excitation in a D-shaped photonic crystal fiber coated by titanium nitride. Plasmonics 15(1):535–542. https://doi.org/10.1007/s11468-019-01072-y

    Article  CAS  Google Scholar 

  18. Dash JN, Jha R (2015) On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10(5):1123–1131. https://doi.org/10.1007/s11468-015-9912-7

    Article  CAS  Google Scholar 

  19. Lu J, Li Y, Han Y, Liu Y, Gao J (2018) D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Appl Opt 57(19):5268–5272. https://doi.org/10.1364/AO.57.005268

    Article  CAS  PubMed  Google Scholar 

  20. Liu B, Lu Y, Yang X, Yao J (2017) Tunable surface plasmon resonance sensor based on photonic crystal fiber filled with gold nanoshells. Plasmonics 13(3):763–770. https://doi.org/10.1007/s11468-017-0570-9

    Article  CAS  Google Scholar 

  21. Mahfuz MA, Sakib MN, Hasib MHH, Bosu A (2019) Design and analysis of dual-core D-shape photonic crystal fiber biosensor. International Conference on Advances in Science, Engineering and Robotics Technology

  22. Chao L, Jwa B, Fwa B, Ws C, Lin Y, Jla B, Gfa B, Xla B, Qiang L, Tao SDJOC (2020) Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings Optics Communications 464. https://doi.org/10.1016/j.optcom.2020.125496

  23. Hassani A, Skorobogatiy M (2007) Design criteria for microstructured-optical-fiber-based surface-plasmon-resonance sensors. J Opt Soc Am B 24(6):1423–1429. https://doi.org/10.1364/josab.24.001423

    Article  CAS  Google Scholar 

  24. Chen W, Thoreson MD, Ishii S (2010) Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt Express 18(5):5124–5134

    Article  CAS  Google Scholar 

  25. Devore JR (1951) Refractive indices of rutile and sphalerite. Journal of the Optical Society of America B 41(6):266–266

    Google Scholar 

  26. Akowuah EK, Gorman T, Ademgil H, Haxha S, Robinson GK, Oliver JV (2012) Numerical analysis of a photonic crystal fiber for biosensing applications. IEEE J Quantum Electron 48(11):1403–1410. https://doi.org/10.1109/jqe.2012.2213803

    Article  CAS  Google Scholar 

  27. Yang X, Lu Y, Liu B, Yao J (2016) Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12(2):489–496. https://doi.org/10.1007/s11468-016-0289-z

    Article  CAS  Google Scholar 

  28. Wang F, Sun Z, Liu C, Sun T, Chu PK (2016) A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics 12(6):1847–1853. https://doi.org/10.1007/s11468-016-0453-5

    Article  Google Scholar 

  29. Liu C, Yang L, Lu X, Liu Q, Wang F, Lv J, Sun T, Mu H, Chu PKJOE (2017) Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. 25 (13):14227–14237

  30. Gangwar RK, Amorim VA, Marques PVS (2019) High performance titanium oxide coated D-shaped optical fiber plasmonic sensor. IEEE Sens J 19(20):9244–9248. https://doi.org/10.1109/jsen.2019.2927728

    Article  CAS  Google Scholar 

  31. Chakma S, Khalek MA, Paul BK, Ahmed K, Hasan MR, Bahar AN (2018) Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: design and analysis. Sensing and Bio-Sensing Research 18:7–12. https://doi.org/10.1016/j.sbsr.2018.02.003

    Article  Google Scholar 

  32. Momota MR, Hasan MR (2018) Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt Mater 76:287–294. https://doi.org/10.1016/j.optmat.2017.12.049

    Article  CAS  Google Scholar 

  33. Wang F, Sun Z, Liu C, Sun T, Chu PK (2018) A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE). Opto-Electron Rev 26(1):50–56. https://doi.org/10.1016/j.opelre.2018.01.001

    Article  Google Scholar 

  34. Sakib MN, Hossain MB, Al-tabatabaie KF, Mehedi IM, Hasan MT, Hossain MA, Amiri IS (2019) High performance dual core D-shape PCF-SPR sensor modeling employing gold coat Results in Physics 15 https://doi.org/10.1016/j.rinp.2019.102788

  35. Fu H, Zhang M, Ding J, Wu J, Zhu Y, Li H, Wang Q, Yang C (2019) A high sensitivity D-type surface plasmon resonance optical fiber refractive index sensor with graphene coated silver nano-columns. Opt Fiber Technol 48:34–39. https://doi.org/10.1016/j.yofte.2018.12.017

    Article  CAS  Google Scholar 

  36. Kaur V, Singh S (2019) Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt Fiber Technol 48:159–164. https://doi.org/10.1016/j.yofte.2018.12.015

    Article  CAS  Google Scholar 

  37. Islam MS, Islam MR, Sultana J, Dinovitser A, Ng BWH, Abbott D (2019) Exposed-core localized surface plasmon resonance biosensor. Journal of the Optical Society of America B 36(8):2306–2311. https://doi.org/10.1364/josab.36.002306

    Article  CAS  Google Scholar 

  38. Sazio P, Amezcua-Correa A, Finlayson C (2006) Microstructured optical fibers as high-pressure microfluidic reactors. Science 311(5767):1583–1586

    Article  CAS  Google Scholar 

  39. Randolph SJ, Fowlkes JD, Rack PD (2007) Focused, nanoscale electron-beam-induced deposition and etching. Crit Rev Solid State Mater Sci 31(3):55–89. https://doi.org/10.1080/10408430600930438

    Article  CAS  Google Scholar 

  40. Li Y, Kim YN, Lee EJ, Cai WP, Cho SO (2006) Synthesis of silver nanoparticles by electron irradiation of silver acetate. Nucl Instrum Methods Phys Res, Sect B 251(2):425–428. https://doi.org/10.1016/j.nimb.2006.06.019

    Article  CAS  Google Scholar 

  41. Zhao B, Chen F, Liu H, Zhang J (2011) Mesoporous TiO2-B nanowires synthesized from tetrabutyl titanate. J Phys Chem Solids 72(3):201–206. https://doi.org/10.1016/j.jpcs.2010.12.014

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by National Natural Science Foundation of China (grant numbers 51902127, 61703090), Jilin City Science and Technology Innovation Development Plan (grant number 201831789), and Science and Technology Development Plan of Jilin Province under Grant (grant number 20190201098JC).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by all authors. The first draft of the manuscript was written by Chenjing Wei, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hairui Fang.

Ethics declarations

Ethical Approval

All authors accepted principles of ethical. The manuscript has not been published previously nor currently submitted for publication elsewhere.

Consent to Participate

All authors consent to participate.

Consent to Publish

All authors consent to publish.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Wei, C., Yang, H. et al. D-Shaped Photonic Crystal Fiber Plasmonic Sensor Based on Silver-Titanium Dioxide Composite Micro-grating. Plasmonics 16, 2049–2059 (2021). https://doi.org/10.1007/s11468-021-01468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01468-9

Keywords

Navigation