Skip to main content
Log in

Enhanced Fluorescence from Periodic Arrays of Silver Nanoparticles

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Electron beam lithography was used to fabricate silver nanoparticle arrays and study the effects of geometrical properties of particles on metal-enhanced fluorescence. Nanoparticle size, shape, interparticle spacing, and nominal thickness were varied in a combinatorial pattern for investigation of the particle plasmon resonance effect on enhancement of fluorescence from three different fluorophores; Fluorescein, Cy3, and Cy5. A specific geometric property for optimal enhancement from each fluorophore was determined. For interparticle spacings greater or equal to 270 nm, the enhancement matched what is expected for a single-particle model. For those particles smaller than 210 nm, the enhancement was lower than for the larger spacing in the range studied. Triangular-shaped particles gave similar enhancement to those of square-shaped particles. This combinatorial pattern by e-beam lithography was found to be useful for studying how individual parameters enhance the fluorescence that are important for rational design of enhanced fluorescence sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. L. Jeanmaire and R. P. van Duyne (1977). J. Electroanal. Chem. 84, 1.

    Article  CAS  Google Scholar 

  2. M. G. Albrecht and J. A. Creighton (1977). J. Am. Chem. Soc. 99, 5215.

    Article  CAS  Google Scholar 

  3. A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson (1980). Opt. Lett. 5(9), 368–370.

    Article  CAS  PubMed  Google Scholar 

  4. S. Garoff, D. A. Weitz, T. J. Gramila, and C. D. Hanson (1981). Opt. Lett. 6(5), 245–247.

    Article  CAS  PubMed  Google Scholar 

  5. A. M. Glass, A. Wokaun, J. P. Heritage, J. P. Bergman, P. F. Liao, and D. H. Olson (1981). Phys. Rev. B 24, 4906.

    Article  CAS  Google Scholar 

  6. G. Ritchie and E. Burstein (1981). Phys. Rev. B 24, 4843.

    Article  CAS  Google Scholar 

  7. J. I. Gersten and A. Nitzan (1985). Surf. Sci. 158, 165–189.

    Article  CAS  Google Scholar 

  8. S. Garoff, D. A. Weitz, M. S. Alvarez, and J. I. Nitzan (1984). J. Chem. Phys. 81(11), 5189–5280.

    Article  CAS  Google Scholar 

  9. M. Moskovitz (1985). Rev. Mod. Phys. 57(3), 783–826.

    Article  Google Scholar 

  10. A. Wokaun (1985). Mol. Phys. 56, 1–33.

    Article  CAS  Google Scholar 

  11. D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan (1983). J. Chem. Phys. 78(9), 5324–5338.

    Article  CAS  Google Scholar 

  12. K. Sokolov, G. Chumanov, and T. M. Cotton (1998). Anal. Chem. 70, 3998–3905.

    Article  Google Scholar 

  13. P. J. Tarcha, J. DeSaja-Gonzales, S. Rodriguez-Llorente, and R. Aroca (1999). Appl. Spectrosc. 53, 43–48.

    Article  CAS  Google Scholar 

  14. T. Liberman and W. Knoll (2000). Colloids Surf. A 171, 115–130.

    Article  Google Scholar 

  15. J. R. Lakowicz (2001). Anal. Biochem. 298, 1–24.

    Article  CAS  PubMed  Google Scholar 

  16. N. Stich, A. Gandhum, V. Matushin, C. Maier, G. Bauer, and T. Schalkhammer (2001). J. Nanosci. Nanotechnol. 1(1), 397–405.

    Article  CAS  PubMed  Google Scholar 

  17. J. Malicka, I. Gryczynski, and J. R. Lakowicz (2003). Anal. Chem. 75, 4408–4414.

    Article  CAS  PubMed  Google Scholar 

  18. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes (2003). J. Phys. D: Appl. Phys. 36, R240–R249.

    Article  CAS  Google Scholar 

  19. F. Yu, D. Yao, and W. Knoll (2003). Anal. Chem. 75, 2610–2617.

    Article  CAS  PubMed  Google Scholar 

  20. T. R. Jensen, R. D. Malinsky, C. L. Haynes, and R. P. van Duyne (2000). J. Phys. Chem. B 104, 10549–10556.

    CAS  Google Scholar 

  21. W. Gotschy, K. Vonmetz, A. Leitner, and F. R. Aussenegg (1996). Appl. Phys. B 63, 381–384.

    CAS  Google Scholar 

  22. N. Felidj, J. Aubard, G. Levi, J. R. Kren, A. Hohenau, S. Schider, A. Leitner, and F. R. Aussenegg (2003). Appl. Phys. Lett. 82(18), 3095–3097.

    Article  CAS  Google Scholar 

  23. O. J. F. Martin (2002). In J. Tominaga and D. P. Tsai (Eds.), Optical Technologies, Springer, Heidelberg, pp. 203–228.

  24. J. P. Kottmann, O. J. F. Martin, D. R. Smith, and S. Schultz (2001). Phys. Rev. B 64, 235402.

    Article  Google Scholar 

  25. R. Jin, Y.-W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng (2001). Science 294, 1901–1903.

    Article  CAS  PubMed  Google Scholar 

  26. J. Kummerlen, A. Leitner, H. Brunner, F. R. Ausenegg, and A. Wokaun (1983). Mol. Phys. 80(5), 1031–1046.

    Article  Google Scholar 

  27. T. Pal, N. R. Jana, and T. Sau (1997). Radiat. Phys. Chem. 49(1), 127–1130.

    Article  CAS  Google Scholar 

  28. W. Rechberger, A. Hohenau, A. Leitner, J. R. Kren, B. Lamprecht, and F. R. Aussenegg (2003). Opt. Commun. 220, 137–141.

    Article  CAS  Google Scholar 

  29. J. R. Lakowicz (2005). Anal. Biochem. 337, 171–194.

    Article  CAS  PubMed  Google Scholar 

  30. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz (2004). Anal. Biochem. 324, 170–182.

    Article  CAS  PubMed  Google Scholar 

  31. H. Szmacinski, J. R. Lakowicz, and M. L. Johnson (1994). Methods Enzymol. 240, 723–748.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Szmacinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrigan, T.D., Guo, S., Phaneuf, R.J. et al. Enhanced Fluorescence from Periodic Arrays of Silver Nanoparticles. J Fluoresc 15, 777–784 (2005). https://doi.org/10.1007/s10895-005-2987-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2987-3

Keywords

Navigation