Skip to main content
Log in

A Compact Graphene Modulator Based on Localized Surface Plasmon Resonance with a Chain of Metal Disks

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Most graphene electro-optic modulators based on the electro-refractive modulation are composed of Mach-Zehnder interferometer or microring resonator structures and have a relative compact size comparing with dielectric ones. To further shrink the footprint, we use the localized surface plasmon resonance of a chain of three metal disks to realize a submicron graphene modulator, whose length can be reduced to less than 1 μm. The proposed graphene modulator has an extinction ratio of 5.5 dB with a length of only 740 nm. And the insertion loss, 3-dB bandwidth, and power consumption of the modulator are 1.9 dB, 83.4 GHz, and 8.55 fJ/bit respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  2. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308

    Article  CAS  Google Scholar 

  3. Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA, Heinz TF (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101(19):196405

    Article  Google Scholar 

  4. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474(7349):64–67

    Article  CAS  Google Scholar 

  5. Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12(3):1482–1485

    Article  Google Scholar 

  6. Kovacevic G, Yamashita S (2016) Design optimizations for a high-speed two-layer graphene optical modulator on silicon. Ieice Electron Exp 13:14), 1–14),11

    Article  Google Scholar 

  7. Phare CT, Lee YHD, Cardenas J, Lipson M (2015) Graphene electro-optic modulator with 30 ghz bandwidth. Nat Photonics 9(8):511–515

    Article  CAS  Google Scholar 

  8. Ye S, Wang Z, Tang L, Zhang Y, Lu R, Liu Y (2014) Electro-absorption optical modulator using dual-graphene-on-graphene configuration. Opt Express 22(21):26173–26180

    Article  CAS  Google Scholar 

  9. Ma Z, Tahersima MH, Khan S et al (2016) Two-dimensional material-based mode confinement engineering in electro-optic modulators. IEEE J Sel Top Quantum Electron 23(1):3400208

    Google Scholar 

  10. Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi SI, Oxenløwe LK, Jin KJ, Mortensen NA, Xiao S (2017) Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale 9(40):15576–15581

    Article  CAS  Google Scholar 

  11. Du W, Li EP et al (2014) Tunability analysis of a graphene-embedded ring modulator. IEEE Photon Technol Lett 26(20):2008–2011

    Article  Google Scholar 

  12. Shu H, Su Z, Huang L, Wu Z, Wang X, Zhang Z, Zhou Z (2018) Significantly high modulation efficiency of compact graphene modulator based on silicon waveguide. Sci Rep 8(1):991

    Article  Google Scholar 

  13. Klar T, Perner M, Grosse S, Plessen V et al (1998) Surface-plasmon resonances in single metallic nanoparticles. Phys Rev Lett 80(19):4249–4252

    Article  CAS  Google Scholar 

  14. Brongersma ML, Hartman JW, Atwater HA et al (1999) Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit. MRS Proc 582(24):16356–16359

    Google Scholar 

  15. Maier SA, Kik PG, Atwater HA (2003) Optical pulse propagation in metal nanoparticle chain waveguides. Phys Rev B 67(20):205402

    Article  Google Scholar 

  16. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355

    Article  CAS  Google Scholar 

  17. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495

    Article  CAS  Google Scholar 

  18. Lee CC, Suzuki S, Xie W, Schibli TR (2012) Broadband graphene electro-optic modulators with sub-wavelength thickness. Opt Express 20(5):5264

    Article  CAS  Google Scholar 

  19. Fan M, Yang H, Zheng P, Hu G, Yun B, Cui Y (2017) Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide. Opt Express 25(18):21619–21629

    Article  CAS  Google Scholar 

  20. Kwon MS (2017) Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide. IEEE Photonics J 6(3):1–9

    Article  Google Scholar 

  21. Johnson, et al. (1972) Optical constants of the noble metals. Phys Rev B (Solid State) 6(12):4370–4379

    Article  Google Scholar 

  22. Stognii N, Sakhnenko N, (2012) Theoretical study of symmetric and antysymmetric plasmons in chains of coupled plasma cylinders, European Conference on Antennas & Propagation IEEE

  23. Guan X, Hao WU, Dai D (2014) Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Front Optoelectron 7(3):300–319

    Article  Google Scholar 

  24. Shiramin LA, Thourhout DV (2017) Graphene modulators and switches integrated on silicon and silicon nitride waveguide. IEEE J Sel Top Quantum Electron 23(1):3600107

    Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of Jiangsu Province Grant (BK 20161429) and the National Natural Science Foundation of China under Grant (61601118).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binfeng Yun or Yiping Cui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, J., Zheng, P., Yang, H. et al. A Compact Graphene Modulator Based on Localized Surface Plasmon Resonance with a Chain of Metal Disks. Plasmonics 14, 1949–1954 (2019). https://doi.org/10.1007/s11468-019-00995-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-019-00995-w

Keywords

Navigation