Skip to main content
Log in

Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Graphene modulators based on surface plasmonic waveguides enable a strong interaction between light and graphene because great electric field enhancement occurs in the sub-wavelength region. However, a tight field confinement will cause a large metal absorption of light. Thus, graphene modulator base on hybrid plasmonic waveguide has a tradeoff between the propagation loss and the modulation depth. Here, we achieved a good balance between them by designing and optimizing an electro-optic modulator based on hybrid plasmonic waveguide with four graphene layers. The structure of the waveguide is metal/insulator/Si/insulator/metal. The modulation depth and the propagation loss of the modulator are 0.524 and 0.05 dB/μm respectively, which make a relatively high figure of merit about 10.5. Also the obtained modulation bandwidth and power consumption are 150 GHz and 0.607 pJ/bit, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marris-Morini D et al (2009) Recent progress in high-speed silicon-based optical modulators. Proc IEEE 97(7):1199–1215

    Article  CAS  Google Scholar 

  2. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  3. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308–1308

    Article  CAS  PubMed  Google Scholar 

  4. Mak KF, Sfeir MY, Wu Y, Lui CH, Misewich JA, Heinz TF (2008) Measurement of the optical conductivity of graphene. Phys Rev Lett 101(19):196405

    Article  CAS  PubMed  Google Scholar 

  5. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146(9):351–355

    Article  CAS  Google Scholar 

  6. Du X, Skachko I, Barker A, Andrei EY (2008) Approaching ballistic transport in suspended graphene. Nat Nanotechnol 3(8):491–495

    Article  CAS  PubMed  Google Scholar 

  7. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X (2011) A graphene-based broadband optical modulator. Nature 474(7349):64–67

    Article  CAS  PubMed  Google Scholar 

  8. Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12(3):1482–1485

    Article  CAS  PubMed  Google Scholar 

  9. Kovacevic G, Yamashita S (2016) Design optimizations for a high-speed two-layer graphene optical modulator on silicon. IEICE Electron Expr 13(14):1–11

    Article  Google Scholar 

  10. Phare CT, Lee YHD, Cardenas J, Lipson M (2015) Graphene electro-optic modulator with 30 GHz bandwidth. Nat Photonics 9(8):511–515

    Article  CAS  Google Scholar 

  11. Ye S, Wang Z, Tang L, Zhang Y, Lu R, Liu Y (2014) Electro-absorption optical modulator using dual-graphene-on-graphene configuration. Opt Express 22(21):26173–26180

    Article  CAS  PubMed  Google Scholar 

  12. Ma Z, Tahersima M, Khan S, Sorger VJ (2017) 2D material-based mode confinement engineering in electro-optic modulators. IEEE J Sel Top Quant 23(1):3400208

  13. Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi SI, Oxenløwe LK, Jin KJ, Mortensen NA, Xiao S (2017) Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale 9(40):15576–15581

    Article  CAS  PubMed  Google Scholar 

  14. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

    Article  CAS  Google Scholar 

  15. Guan X, Hao WU, Dai D (2014) Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Front Optoelectron 7(3):300–319

    Article  Google Scholar 

  16. Kwon MS (2017) Discussion of the epsilon-near-zero effect of graphene in a horizontal slot waveguide. IEEE Photonics J 6(3):1–9

    Article  CAS  Google Scholar 

  17. Lee CC, Suzuki S, Xie W, Schibli TR (2012) Broadband graphene electro-optic modulators with sub-wavelength thickness. Opt Express 20(5):5264–5269

    Article  CAS  PubMed  Google Scholar 

  18. Fan M, Yang H, Zheng P, Hu G, Yun B, Cui Y (2017) Multilayer graphene electro-absorption optical modulator based on double-stripe silicon nitride waveguide. Opt Express 25(18):21619–21629

    Article  CAS  PubMed  Google Scholar 

  19. Shiramin LA, Thourhout DV (2017) Graphene modulators and switches integrated on silicon and silicon nitride waveguide. IEEE J Sel Top Quant 23(1):3600107

Download references

Funding

This work was supported by the National Science Foundation of Jiangsu Province Grant No. BK 20161429.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binfeng Yun or Yiping Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, J., Fan, M., Zheng, P. et al. Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots. Plasmonics 14, 133–138 (2019). https://doi.org/10.1007/s11468-018-0785-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0785-4

Keywords

Navigation