Skip to main content
Log in

Silver nanoparticles modified with thiomalic acid as a colorimetric probe for determination of cystamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

An Erratum to this article was published on 27 December 2016

Abstract

The authors describe a colorimetric method for highly selective determination of cystamine using silver nanoparticles capped with thiomalic acid (TMA-AgNPs). The TMA-AgNPs exhibit a strong surface plasmon resonance absorption band at 395 nm. After the addition of cystamine to their yellow colloidal solution, the absorption maximum at 395 nm decreases gradually, and a new absorption peak appears at around 560 nm. This is accompanied by a color change, first to green and then to purple. The aggregation of NPs induced by cystamine is assumed to be due to the electrostatic interaction between capped NPs and cystamine. Aggregation was confirmed by UV–vis absorptiometry and transmission electron microscopy. A linear correlation was obtained between the ratio of absorbances at 560 and 395 nm and the cystamine concentration in the range between 0.2 μM and 10.0 μM. The limit of detection is 46 nM. The method was successfully applied to the determination of cystamine in spiked human serum and urine samples. Recoveries ranged between 94.0 % and 100.9 %, and relative standard deviations are <9.50 % (for n = 3).

A rapid and selective colorimetric method for detection of cystamine is described. The electrostatic interactions between positively charged cystamine-capped silver nanoparticles (AgNPs) and negatively charged thiomalic acid capped AgNPs leads to nanoparticle aggregation and a color change from yellow to green.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allegra P, Amodeo E, Colombatto S, Solinas SP (2002) The ability of cystamine to bind DNA. Amino Acids 22:155–166. doi:10.1007/s007260200004

    Article  CAS  Google Scholar 

  2. Jeitner TM, Delikatny EJ, Ahlqvist J, Capper H, Cooper AJ (2005) Mechanism for the inhibition of transglutaminase 2 by cystamine. Biochem Pharmacol 69:961–970. doi:10.1016/j.bcp.2004.12.011

    Article  CAS  Google Scholar 

  3. Gibrat C, Bousquet M, Saint-Pierre M et al (2010) Cystamine prevents mptp-induced toxicity in young adult mice via the up-regulation of the brain-derived neurotrophic factor. Prog Neuropsychopharmacol Biol Psychiatry 34:193–203. doi:10.1016/j.pnpbp.2009.11.005

    Article  CAS  Google Scholar 

  4. Gibrat C, Cicchetti F (2011) Potential of cystamine and cysteamine in the treatment of neurodegenerative diseases. Prog Neuropsychopharmacolo Biol Psychiatry 35:380–389. doi:10.1016/j.pnpbp.2010.11.023

    Article  CAS  Google Scholar 

  5. Dedeoglu A, Kubilus JK, Jeitner TM, Matson SA, Bogdanov M, Kowall NW, Matson WR, Cooper AJ, Ratan RR, Beal MF, Hersch SM, Ferrante RJ (2002) Therapeutic effects of cystamine in a murine model of Huntington’s disease. J Neurosci 22:8942–8950

    CAS  Google Scholar 

  6. Fox JH, Barber DS, Singh B, Zucker B, Swindell MK, Norflus F, Buzescu R, Chopra R, Ferrante RJ, Kazantsev A, Hersch SM (2004) Cystamine increases L-cysteine levels in Huntington’s disease transgenic mouse brain and in a PC12 model of polyglutamine aggregation. J Neurochem 91:413–422. doi:10.1111/j.1471-4159.2004.02726.x

    Article  CAS  Google Scholar 

  7. Karpuj MV, Becher MW, Steinman L (2002) Evidence for a role for transglutaminase in Huntington’s disease and the potential therapeutic implications. Neurochem Int 40:31–36. doi:10.1016/S0197-0186(01)00060-2

    Article  CAS  Google Scholar 

  8. Wang X, Sarkar A, Cicchetti F, Yu M, Zhu A, Jokivarsi K, Saint-Pierre M, Brownell AL (2005) Cerebral PET imaging and histological evidence of transglutaminase inhibitor cystamine induced neuroprotection in transgenic R6/2 mouse model of Huntington’s disease. J Neurol Sci 231:57–66. doi:10.1016/j.jns.2004.12.011

    Article  CAS  Google Scholar 

  9. Van Raamsdonk JM, Murphy Z, Slow EJ, Leavitt BR, Hayden MR (2005) Selective degeneration and nuclear localization of mutant huntingtin in the YAC128 mouse model of Huntington disease. Hum Mol Genet 14:3823–3835. doi:10.1093/hmg/ddi407

    Article  CAS  Google Scholar 

  10. Hwang IK, Yoo KY, Yi SS, Kim IY, Hwang HS, Lee KY, Choi SM, Lee IS, Yoon YS, Kim SY, Won MH, Seong JK (2009) Expression of tissue-type transglutaminase (ttg) and the effect of ttg inhibitor on the hippocampal ca1 region after transient ischemia in gerbils. Brain Res 1263:134–142. doi:10.1016/j.brainres.2009.01.038

    Article  CAS  Google Scholar 

  11. Li P, Jiao Y, Ding J, Chen Y, Cui Y, Qian C, Yang X, Ju S, Hong-Hong Yao H, Teng G (2015) Cystamine improves functional recovery via axon remodeling and neuroprotection after stroke in mice. CNS Neurosci Ther 21(3):231–240. doi:10.1111/cns.12343

    Article  Google Scholar 

  12. Ida S, Tanaka Y, Ohkuma S, Kuriyama K (1984) Determination of cystamine by high performance liquid chromatography. Anal Biochem 136:352–356

    Article  CAS  Google Scholar 

  13. Kataoka H, Imamura Y, Tanaka H, Makita M (1993) Determination of cysteamine and cystamine by gas chromatography with flame photometric detection. J Pharm Biomed Anal 11(10):963–969. doi:10.1016/0731–7085(93)80056-7

    Article  CAS  Google Scholar 

  14. Jellum E, Bacon VA, Patton W, Pereira W, Halpern B (1969) Quantitative determination of biologically important thiols and disulfides by gas-liquid chromatography. Anal Biochem 31:339–347. doi:10.1016/0003-2697(69)90274-7

    Article  CAS  Google Scholar 

  15. Cappiello M, Corso AD, Camici M, Mura U (1993) Thiol and disulfide determination by free zone capillary electrophoresis. J Biochem Biophys Methods 26:335–341. doi:10.1016/0165-022X(93)90034-L

    Article  CAS  Google Scholar 

  16. Rastegarzadeh S, Hashemi F (2015) Gold nanoparticles as a colorimetric probe for the determination of N-acetyl-L-cysteine in biological samples and pharmaceutical formulations. Anal Methods 7(4):1478–1483. doi:10.1039/c4ay01961j

    Article  CAS  Google Scholar 

  17. Guo Y, Yang L, Li W, Wang X, Shang Y, Li B (2016) Carbon dots doped with nitrogen and sulfur and loaded with copper(II) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine. Microchim Acta 183(4):1409–1416. doi:10.1007/s00604-016-1779-6

    Article  CAS  Google Scholar 

  18. Liu Z, Zhang H, Hou S, Ma H (2012) Highly sensitive and selective electrochemical detection of L-cysteine using nanoporous gold. Microchim Acta 177:427–433. doi:10.1007/s00604-012-0801-x

    Article  CAS  Google Scholar 

  19. Li H, Xu D (2014) Silver nanoparticles as labels for applications in bioassays. TrAC Trends Anal Chem 61:67–73. doi:10.1016/j.trac.2014.05.003

    Article  CAS  Google Scholar 

  20. Doria G, Conde J, Veigas B, Giestas L, Almeida C, Assunção M, Rosa J, Baptista PV (2012) Noble metal nanoparticles for biosensing applications. Sensors 12:1657–1687. doi:10.3390/s120201657

    Article  CAS  Google Scholar 

  21. Sepulveda B, Angelomé PC, Lechuga LM, Liz-Marzan LM (2009) LSPR-based nanobiosensors. Nano Today 4:244–251. doi:10.1016/j.nantod.2009.04.001

    Article  CAS  Google Scholar 

  22. Liang A, Liu Q, Wen G, Jiang Z (2012) The surface-plasmon-resonance effect of nanogold/silver and its analytical applications. TrAC Trends Anal Chem 37:32–47. doi:10.1016/j.trac.2012.03.015

    Article  CAS  Google Scholar 

  23. Chhatre A, Solasa P, Sakle S, Thaokar R, Mehra A (2012) Color and surface plasmon effects in nanoparticle systems: case of silver nanoparticles prepared by microemulsion route. Colloids Surf A Physicochem Eng Asp 404:83–92. doi:10.1016/j.colsurfa.2012.04.016

    Article  CAS  Google Scholar 

  24. Song Y, Wei W, Qu X (2011) Colorimetric biosensing using smart materials. Adv Mater 23:4215–4236. doi:10.1002/adma.201101853

    Article  CAS  Google Scholar 

  25. Mohammadi S, Khayatian G (2015) Colorimetric detection of Bi (III) in water and drug samples using pyridine-2,6-dicarboxylic acid modified silver nanoparticles. Spectrochim Acta, Part A 148:405–411. doi:10.1016/j.saa.2015.03.127

    Article  CAS  Google Scholar 

  26. Shanmugaraj K, Ilanchelian M (2016) Colorimetric determination of sulfide using chitosan-capped silver nanoparticles. Microchim Acta 183(5):1721–1728. doi:10.1007/s00604-016-1802-y

    Article  CAS  Google Scholar 

  27. Huang P, Li J, Song J, Gao N, Wu F (2016) Silver nanoparticles modified with sulfanilic acid for one-step colorimetric and visual determination of histidine in serum. Microchim Acta 183(6):1865–1872. doi:10.1007/s00604-016-1823-6

    Article  CAS  Google Scholar 

  28. He Y, Zhang X (2016) Ultrasensitive colorimetric detection of manganese(II) ions based on anti-aggregation of unmodified silver nanoparticles. Sens Actuators B 222:320–324. doi:10.1016/j.snb.2015.08.089

    Article  CAS  Google Scholar 

  29. Jin W, Huang P, Wu F, Ma LH (2015) Ultrasensitive colorimetric assay of cadmium ion based on silver nanoparticles functionalized with 5-sulfosalicylic acid for wide practical applications. Analyst 140:3507–3513. doi:10.1039/C5AN00230C

    Article  CAS  Google Scholar 

  30. Song J, Wu F, Wan Y, Ma L (2014) Colorimetric detection of melamine in pretreated milk using silver nanoparticles functionalized with sulfanilic acid. Food Control 50:356–361. doi:10.1016/j.foodcont.2014.08.049

    Article  Google Scholar 

  31. Rohit J, Kumar Kailasa S (2014) Cyclen dithiocarbamate-functionalized silver nanoparticles as a probe for colorimetric sensing of thiram and paraquat pesticides via host–guest chemistry. J Nanopart Res 16:2585–2601. doi:10.1007/s11051-014-2585-x

    Article  Google Scholar 

  32. Kumar VV, Philip Anthony S (2015) Heavy metal cation and anion sensing studies of N-(2-hydroxybenzyl)-isopropylamine surface functionalized AgNPs. New J Chem 39:1308–1314. doi:10.1039/c4nj01740d

    Article  Google Scholar 

  33. Kumar VV, Philip Anthony S (2014) Coordinating ligand functionalized AgNPs for colorimetric sensing: effect of subtle structural and conformational change of ligand on the selectivity. RSC Adv 4:64717–64724. doi:10.1039/c4ra13586e

    Article  Google Scholar 

  34. Kappi FA, Tsogas GZ, Giokas DL, Christodouleas DC, Vlessidis AG (2014) Colorimetric and visual read-out determination of cyanuric acid exploiting the interaction between melamine and silver nanoparticles. Microchim Acta 181:623–629. doi:10.1007/s00604-014-1163-3

    Article  CAS  Google Scholar 

  35. Yuan Y, Zhang J, Zhang H, Yang X (2012) Silver nanoparticle based label-free colorimetric immunosensor for rapid detection of neurogenin 1. Analyst 137:496–501. doi:10.1039/C1AN15875A

    Article  CAS  Google Scholar 

  36. Qu J-C, Chang Y-P, Ma Y-H, Zheng J-M, Li H-H, Ou Q-Q, Ren C, Chen X-G (2012) A simple and sensitive colorimetric method for the determination of propafenone by silver nanoprobe. Sensors Actuators B 174:133–139. doi:10.1016/j.snb.2012.08.045

    Article  CAS  Google Scholar 

  37. Azcarate J C, Addato F A M, Rubert A, Corthey G, Moreno G S K, Benítez G, Zelaya E, Roberto C. Salvarezza R C, Fonticelli M H (2014) Surface chemistry of thiomalic acid adsorption on planar gold and gold nanoparticles. Langmuir 30:1820–1826. doi: 10.1021/la404674m

  38. Jinnarak A, Teerasong S (2016) A novel colorimetric method for detection of gamma-aminobutyric acid based on silver nanoparticles. Sensors Actuators B 229:315–320. doi:10.1016/j.snb.2016.01.115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports of this study from Department of Chemistry, Faculty of Science, University of Kurdistan, Sanandaj (2014). We would like to thank Prof. Cristina Nerin and her group, Department of Analytical Chemistry, University of Zaragoza, Zaragoza, Spain for helping to do TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Mohammadi.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00604-016-2056-4.

Electronic supplementary material

ESM 1

(DOCX 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, S., Khayatian, G. Silver nanoparticles modified with thiomalic acid as a colorimetric probe for determination of cystamine. Microchim Acta 184, 253–259 (2017). https://doi.org/10.1007/s00604-016-1991-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1991-4

Keywords

Navigation