Skip to main content
Log in

Ring-Shaped Plasmonic Logic Gates

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Ring-shaped one-, two-, and three-bit plasmonic logic gate configurations and circuits have been proposed, which, besides being compact, are also versatile and can be easily cascaded, the output logic values being controlled by both the geometry of the multi-port rings and the phase of the incident beams. This latter degree of freedom, not fully exploited up to now in plasmonic circuits, offers a high degree of flexibility of logic gate configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D 45:113001

    Article  CAS  Google Scholar 

  2. Szunerits S, Boukherroub R (eds) (2015) Introduction to plasmonics: advances and applications. Pan Stanford, New York

    Google Scholar 

  3. Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C (2015) Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 23:31755–31765

    Article  PubMed  Google Scholar 

  4. Wei H, Wang Z, Tian X, Käll M, Xu H (2011) Cascaded logic gates in nanophotonic plasmon networks. Nat Commun 2(387):387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lu C, Hu X, Yue S, Fu Y, Yang H, Gong Q (2013) Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics 8:749–754

    Article  CAS  Google Scholar 

  6. Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12:5784–5790

    Article  CAS  PubMed  Google Scholar 

  7. Bian Y, Gong Q (2014) Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures. Opt Commun 313:27–35

    Article  CAS  Google Scholar 

  8. Cohen M, Zalevsky Z, Shavit R (2013) Towards integrated nanoplasmonic logic circuitry. Nanoscale 5:5442–5449

    Article  CAS  PubMed  Google Scholar 

  9. Pan D, Wei H, Xu H (2013) Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt Express 22:9556–9562

    Article  Google Scholar 

  10. Yang X, Hu X, Yang H, Gong Q (2017) Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nanophotonics 6:365–376

    Article  CAS  Google Scholar 

  11. Vladescu E, Dragoman D (2018) Reconfigurable plasmonic logic gates. Plasmonics. https://doi.org/10.1007/s11468-018-0737-z

  12. Davis TJ, Gómez DE, Roberts A (2017) Plasmonic circuits for manipulating optical information. Nanophotonics 6:543–559

    Google Scholar 

  13. Dionne JA, Sweatlock LA, Atwater HA (2006) Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys Rev B 73:035407

    Article  CAS  Google Scholar 

  14. Wang F, Gong Z, Hu X, Yang X, Yang H, Gong Q (2016) Nanoscale on-chip all-optical logic parity checker in integrated plasmonic circuits in optical communication range. Sci Rep 6:24433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kocabaş ŞE, Veronis G, Miller DAB, Fan S (2008) Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J Sel To Quantum Electron 14:1462–1472

    Article  CAS  Google Scholar 

  16. Pannipitiya A, Rukhlenko ID, Premaratne M (2011) Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions. IEEE Photonics J 3:220–233

    Article  Google Scholar 

  17. Nejati H, Beirami A (2012) Theoretical analysis of the characteristic impedance in metal-insulator-metal plasmonic transmission lines. Opt Lett 37:1050–1052

    Article  CAS  PubMed  Google Scholar 

  18. Mongia RK, Bahl IJ, Bhartia P, Hong J (2007) RF and microwave coupled-line circuits, 2nd edn. Artech House, Boston

    Google Scholar 

  19. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  20. Zuo C, Xia J, Sun H, Ge Y, Yuan S, Liu X (2017) Broadband acoustic logic gates in a circular waveguide with multiple ports. Appl Phys Lett 111:243501

    Article  CAS  Google Scholar 

  21. Xu F, Das S, Gong Y, Liu Q, Chien H-C, Chiu H-Y, Wu J, Hui R (2015) Complex refractive index tunability of graphene at 1550 nm wavelength. Appl Phys Lett 106:031109

    Article  CAS  Google Scholar 

  22. Eskalen H, Özğan Ş, Alver Ü, Kerli S (2015) Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles. Acta Phys Pol A 127:756–760

    Article  CAS  Google Scholar 

  23. Misra NK, Kushwaha MK, Wairya S, Kumar A (2015) Cost efficient design of reversible adder circuits for low power applications. Int J Comput Appl 117(19):37–45

    Google Scholar 

  24. Shende VV, Markov IL (2009) On the CNOT-cost of Toffoli gates. Quantum Inf Comput 9:461–486

    Google Scholar 

  25. Bahadori M, Eshaghian A, Rezaei M, Hodaei H, Mehrany K (2013) Coupled transmission line model for planar metal-dielectric-metal plasmonic structures: inclusion of the first non-principal mode. IEEE J Quantum Electron 49:777–784

    Article  CAS  Google Scholar 

  26. Zia R, Selker MD, Catrysse PB, Brongersma ML (2004) Geometries and materials for subwavelength surface plasmon modes. J Opt Soc Am A 21:2442–2446

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0122, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Dragoman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dragoman, D., Vlădescu, E. Ring-Shaped Plasmonic Logic Gates. Plasmonics 14, 71–78 (2019). https://doi.org/10.1007/s11468-018-0779-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0779-2

Keywords

Navigation