Skip to main content
Log in

Reconfigurable Plasmonic Logic Gates

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Reconfigurable one-, two-, and three-bit plasmonic logic gate configurations have been proposed, which work by covering a straight slot waveguide with materials with tunable dielectric constants, such as graphene. By encoding the logic states in the values of dielectric constants as opposed to different waveguides, the plasmon excitation problems are minimized and the simplified logic gate configurations could be easily implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Markov IL (2014) Limits on fundamental limits to computation. Nature 512:147–154

    Article  CAS  PubMed  Google Scholar 

  2. Jones JA, Jaksch D (2012) Quantum information, computation and communication. Cambridge Univ. Press, Cambridge, U.K

    Book  Google Scholar 

  3. Ambs P (2010) Optical computing: a 60-year adventure. Adv Opt Technol 372652:2010

    Google Scholar 

  4. Bhattacharya N, van Linden van den Heuvell HB, Spreeuw RJC (2002) Implementation of quantum search algorithm using classical Fourier optics. Phys Rev Lett 88:137901

    Article  CAS  PubMed  Google Scholar 

  5. Arvind GK, Narang G (2007) Optical implementations, oracle equivalence, and the Bernstein-Vazirani algorithm. J Opt Soc Am B 24:221–225

    Article  CAS  Google Scholar 

  6. Birr T, Zywietz U, Chhantyal P, Chichkov BN, Reinhardt C (2015) Ultrafast surface plasmon-polariton logic gates and half-adder. Opt Express 23:31755–31765

    Article  PubMed  Google Scholar 

  7. Wei H, Wang Z, Tian X, Käll M, Xu H (2011) Cascaded logic gates in nanophotonic plasmon networks. Nat Commun 2:387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu C, Hu X, Yue S, Fu Y, Yang H, Gong Q (2013) Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics 8:749–754

    Article  CAS  Google Scholar 

  9. Fu Y, Hu X, Lu C, Yue S, Yang H, Gong Q (2012) All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Lett 12:5784–5790

    Article  CAS  PubMed  Google Scholar 

  10. Bian Y, Gong Q (2014) Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures. Opt Commun 313:27–35

    Article  CAS  Google Scholar 

  11. Cohen M, Zalevsky Z, Shavit R (2013) Towards integrated nanoplasmonic logic circuitry. Nano 5:5442–5449

    CAS  Google Scholar 

  12. Pan D, Wei H, Xu H (2013) Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations. Opt Express 22:9556–9562

    Article  Google Scholar 

  13. Yang X, Hu X, Yang H, Gong Q (2017) Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities. Nano 6:365–376

    CAS  Google Scholar 

  14. Kocabaş ŞE, Veronis G, Miller DAB, Fan S (2008) Transmission line and equivalent circuit models for plasmonic waveguide components. IEEE J Selected Topics Q Electron 14:1462–1472

    Article  CAS  Google Scholar 

  15. Pannipitiya A, Rukhlenko ID, Premaratne M (2011) Analytical modeling of resonant cavities for plasmonic-slot-waveguide junctions. IEEE Photonics J 3:220–233

    Article  Google Scholar 

  16. Nejati H, Beirami A (2012) Theoretical analysis of the characteristic impedance in metal-insulator-metal plasmonic transmission lines. Opt Lett 37:1050–1052

    Article  CAS  PubMed  Google Scholar 

  17. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  18. Xu F, Das S, Gong Y, Liu Q, Chien H-C, Chiu H-Y, Wu J, Hui R (2015) Complex refractive index tunability of graphene at 1550 nm wavelength. Appl Phys Lett 106:031109

    Article  CAS  Google Scholar 

  19. Lu H, Gan X, Mao D, Zhao J (2017) Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides. Photon Res 5:162–167

    Article  CAS  Google Scholar 

  20. Eskalen H, Özğan Ş, Alver Ü, Kerli S (2015) Electro-optical properties of liquid crystals composite with zinc oxide nanoparticles. Acta Phys Pol A 127:756–760

    Article  CAS  Google Scholar 

  21. Hart WS, Bark AO, Phillips CC (2018) Ultra low-loss super-resolution with extremely anisotropic semiconductor metamaterials. AIP Adv 8:025203

    Article  CAS  Google Scholar 

  22. Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8:1086–1101

    Article  CAS  PubMed  Google Scholar 

  23. Yu R, Pruneri V, de Abajo FJG (2016) Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas. Sci Rep 6(32144)

  24. Choi SH, Kim YL, Byun KM (2011) Graphene-on-silver substrates for sensitive surface Plasmon resonance imaging biosensors. Opt Express 19:458–466

    Article  CAS  PubMed  Google Scholar 

  25. Salihoglu O, Balci S, Kocabas C (2012) Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl Phys Lett 100:213110

    Article  CAS  Google Scholar 

  26. Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi SI, Oxenløwe LK, Jin KJ, Mortensen NA, Xiao S (2017) Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nano 9:15576

    CAS  Google Scholar 

  27. Bozhevolnyi SI, Jung J (2008) Scaling for gap plasmon based waveguides. Opt Express 16:2676–2684

    Article  PubMed  Google Scholar 

  28. Liu X, Gao J, Yang H, Liu H, Wang X, Shen Z (2016) Near-infrared absorption enhancement mechanism investigations of deep-trench silicon microstructures covered with gold films. Plasmonics 11:1019–1024

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by a grant of Ministry of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P4-ID-PCE-2016-0122, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Dragoman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlădescu, E., Dragoman, D. Reconfigurable Plasmonic Logic Gates. Plasmonics 13, 2189–2195 (2018). https://doi.org/10.1007/s11468-018-0737-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0737-z

Keywords

Navigation