Skip to main content
Log in

Efficient Modulation of Multipolar Fano Resonances in Asymmetric Ring-Disk/Split-Ring-Disk Nanostructure

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Generation of multiple Fano resonances are theoretically investigated in asymmetry ring-disk and asymmetry split-ring-disk. The effects of structural parameter on multiple Fano resonances are analyzed in detail, and it is found that the wavelength of multipole Fano resonances can be extensively and accurately controlled by changing the gap size and the relative offset between the ring/split-ring and disk in asymmetric ring-disk/split-ring-disk nanostructure. Simulation on scattering spectra of the asymmetric structure show that Fano dips generally exhibit redshift in resonant wavelength and simultaneously with a varied modulation depth as symmetry of the structure is further broken. The results of the near-field distribution and phase simulation disclose that multiple Fano resonances are caused by interference of dipolar bright mode of whole asymmetric structure with the combined high-order dark-dark modes, and the dip on the shorter resonant wavelength side corresponds to higher-order dark mode. Furthermore, it is found that the multiple Fano resonances of asymmetry ring-disk are polarization-independent. However, for the asymmetric split-ring-disk, resonances are sensitive to polarization angle and number of the dips can be switched on and off by tuning the polarization angle. The proposed asymmetric nanostructures could find wide applications in plasmon line shaping, multiband sensing, electromagnetic-induced transparency and many other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fang Z, Cai J, Nordlander P et al (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11(10):4475–4479

    Article  CAS  PubMed  Google Scholar 

  2. Pena-Rodriguez O, Pal U, Campoy-Quiles M et al (2011) Enhanced Fano resonance in asymmetrical Au:Ag hererodimers. JPhysChem C 115(14):6410–6414

    CAS  Google Scholar 

  3. Wang J, Fan C, Ding P et al (2013) Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Opt Express 21(2):2236–2244

    Article  PubMed  Google Scholar 

  4. Ji BY, Wang Q, Song XW et al (2017) Disclosing dark mode of femtosecond plasmon with photoemission electron microscopy. Journal of Physics D Applied Physics 16:035002

    Google Scholar 

  5. Wang W, Li Y, Peng J, Chen Z, Qian J, Chen J, Xu J, Sun Q (2014) Polarization dependent Fano resonance in a metallic triangle embedded in split ring plasmonic nanostructures. J Opt 16(3):035002

    Article  CAS  Google Scholar 

  6. Li J, Liu TZ, Zheng H et al (2014) Higher order Fano resonances and electric field enhancements in disk-ring plasmonic nanostructures with double symmetry breaking. Plasmonics 9(6):1439–1445

    Article  CAS  Google Scholar 

  7. Wu C, Khanikaev AB, Adato R, Arju N, Yanik AA, Altug H, Shvets G (2012) Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nature Material 11(1):69–75

    Article  CAS  Google Scholar 

  8. Yanik AA, Cetin AE, Huang M, Artar A, Mousavi SH, Khanikaev A, Connor JH, Shvets G, Altug H (2011) Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc Natl Acad Sci U S A 108(29):11784

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ye J, Wen F, Sobhani H, Lassiter JB, van Dorpe P, Nordlander P, Halas NJ (2012) Plasmonic nanoclusters: near field properties of the Fano resonance interrogated with SERS. Nano Lett 12(3):1660–1667

    Article  CAS  PubMed  Google Scholar 

  10. Cui Y, Zhou J, Tamma VA, Park W (2012) Dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructure. ACS Nano 6(3):2385–2393

    Article  CAS  PubMed  Google Scholar 

  11. Adnan D, Giovanni M (2013) Plasmonic Fano resonances in single-layer gold conical nanoshells. Plasmonics 8(3):1429–1437

    Article  CAS  Google Scholar 

  12. Muhammad A, Adnan D (2015) Polarization selective electromagnetic-induced transparency in the disordered Plasmonic quasi-crystal structure. Phys Chem C 119(37)

  13. Fu YH, Zhang JB, Yu YF et al (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. Nano Lett 6(6):5130–5137

    CAS  Google Scholar 

  14. Muhammad A, Amjad A, Khan SD et al (2015) Multiple higher-order Fano resonances in plasmonic hollow cylindrical nanodimer. Appl Phys A 120(2):641–649

    Article  CAS  Google Scholar 

  15. Adnan D, Muhammad A, Khan RU et al (2014) Generation of multiple Fano resonances in plasmonic split nanoring dimer. Plasmonics 9(5):1091–1102

    Article  CAS  Google Scholar 

  16. Koray A, Imogen M, Atwater H et al (2010) Symmetry breaking and strong coupling in planar optical metamaterials. Opt Express 18(13):13407–13417

    Article  CAS  Google Scholar 

  17. Liu N, Mukherjee S, Bao K, Brown LV, Dorfmüller J, Nordlander P, Halas NJ (2012) Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Lett 12(1):364–369

    Article  CAS  PubMed  Google Scholar 

  18. A. Ahmadivand, R. Sinha, N. Pala, et al (2015) Graphene plasmonics: multiple sharp Fano resonances in silver split concentric nanoring/disk resonator dimmers on a metasurface. Spie Nanoscience + Engineering, 9547

  19. Zarrabi BF, Moghadasi MN (2017) Investigated the Fano resonance in the nano ring arrangement. Optik 138:80–86

    Article  CAS  Google Scholar 

  20. Li N, Tian XJ, Zhang W, Luo L, Li G, Zhang Z (2015) Double Fano resonances in a planar pseudo-dolmen structure. Sensors Actuators A 234:346–350

    Article  CAS  Google Scholar 

  21. Chen JX, Wang P, Zhan QW et al (2011) Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Opt Express 19(7):5970–5978

    Article  PubMed  Google Scholar 

  22. Chang WS, Lassiter J, Link S et al (2012) A plasmonic Fano switch. Nano Lett 12(9):4977–4982

    Article  CAS  PubMed  Google Scholar 

  23. Liu SD, Zhang MJ, Wang WJ, Wang YC (2013) Tuning multiple Fano resonances in plasmonic pentamer clusters. Appl Phys Lett 102(13):133105

    Article  CAS  Google Scholar 

  24. Hao F, Nordlander P, Burnett MT, Maier SA (2007) Enhanced tenability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. Phys Rev B 76(24):245417

    Article  CAS  Google Scholar 

  25. Ross BM, Lee LP (2008) Plasmon tuning and local field enhancement maximization of the nanocrescent. Nanotechnology 19(27):275201

    Article  PubMed  Google Scholar 

  26. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, van Dorpe P, Nordlander P, Maier SA (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4(3):1664–1670

    Article  CAS  PubMed  Google Scholar 

  27. Habteyes TG, Dhuey S, Cabrini S et al (2010) Theta-shaped plasmonic nanostructures: bring “dark” multipole plasmon resonances into action via conductive coupling. Nano Lett 11(4):1819–1825

    Article  CAS  Google Scholar 

  28. Zhang S, Li G, Chen YQ et al (2016) Pronounced Fano resonance in single gold split nanodisks wiyh 15-nm split gaps for intensive second harmonic generation. ACS Nano 10:1442–1453

    Article  CAS  Google Scholar 

  29. Sun B, Zhao LX, Wang C et al (2014) Tunable Fanno resonance in E-shape plasmonic nanocavities. J Phys Chem C 118(43):25124–25131

    Article  CAS  Google Scholar 

  30. Zhang Q, Wen XG, Li GY et al (2013) Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. ACS Nano 7(12):11071–11078

    Article  CAS  PubMed  Google Scholar 

  31. FDTD solution, http://www.lumerical.com

  32. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  33. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and at tunable Fano resonances. Nano Lett 8(11):3983–3988

    Article  CAS  PubMed  Google Scholar 

  34. Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3(3):643–652

    Article  CAS  PubMed  Google Scholar 

  35. Shen Y, Zhou J, Liu T, Tao Y, Jiang R, Liu M, Xiao G, Zhu J, Zhou ZK, Wang X, Jin C, Wang J (2013) Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4(4):2381

    Article  PubMed  Google Scholar 

  36. Ovidio P, Antonio R, Mariano C et al (2013) Tunable Fano resonance in symmetric multilayered gold nanoshells. Nanoscale 5(1):209

    Article  Google Scholar 

  37. Clark AW, Sheridan AK, Glidle A, Cumming DRS, Cooper JM (2007) Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl Phys Lett 91(9):093109

    Article  CAS  Google Scholar 

  38. Benjamin G, Olivier JF (2011) Influence of electromagenetic interaction on the line shape of plasmonic Fano resonances. ACS Nano 5(11):8999–9008

    Article  CAS  Google Scholar 

  39. Rochholz H, Bocchio N, Kreiter M (2007) Tuning resonances on crescent-shaped noble-metal nanoparticles. New J Phys 9(53):1367

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the helpful discussion with Prof. Toshihisa Tomie at Changchun University of Science and Technology.

Funding

This project was supported by the National Natural Science Foundation of China under Grant Nos. 61775021, 11474040, 11474039, 61605017, and 61575030; Jilin Provincial Science and Technology Department 20170519018JH; and Jilin Provincial Education Department (JJKH20181104KJ) “111” Project of China (D17017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaowei Song or Jingquan Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, J., Ji, B., Song, X. et al. Efficient Modulation of Multipolar Fano Resonances in Asymmetric Ring-Disk/Split-Ring-Disk Nanostructure. Plasmonics 14, 41–52 (2019). https://doi.org/10.1007/s11468-018-0775-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0775-6

Keywords

Navigation