Skip to main content
Log in

Manipulation of Magnetic Fano Resonances in Double Split-Hole Disk

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The plasmon resonances and magnetic field enhancement in double split-hole disk are investigated by using finite element method. The multipolar modes and the magnetic Fano resonances of the double split-hole disk can be tuned by modifying the structure parameters. The oscillate direction of the closed current in the right and the left split hole can be tuned, achieving the bright and dark magnetic modes of this system. These new emergent phenomena in this nanostructure have potential applications in the propagation of low-loss magnetic plasmons and advanced devices based on magnetic Fano resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu N, Guo HC, Fu LW, Kaiser S, Schweizer H, Giessen H (2008) Three-dimensional photonic metamaterials at optical frequencies. Nat Mater 7(1):31–37

    Article  CAS  Google Scholar 

  2. Liu N, Giessen H (2010) Coupling effects in optical metamaterials. Angew Chem Int Ed 49(51):9838–9852

    Article  CAS  Google Scholar 

  3. Zheludev NI, Kivshar YS (2012) From metamaterials to metadevices. Nat Mater 11:917–924

    Article  CAS  Google Scholar 

  4. Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X (2004) Terahertz magnetic response from artificial materials. Science 303:1494–1496

    Article  CAS  Google Scholar 

  5. Shalaev VM (2007) Optical negative index metamaterials. Nat Photonics 1:41–48

    Article  CAS  Google Scholar 

  6. Liu N, Mukherjee S, Bao K, Brown LV, Dorfmüller J, Nordlander P, Halas NJ (2009) Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Letter 12:364–369

    Article  CAS  Google Scholar 

  7. Sheikholeslami SN, García-Etxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Letter 11:3927–3934

    Article  CAS  Google Scholar 

  8. Nazir A, Panaro S, Proietti Zaccaria R, Liberale C, De Angelis F, Toma A (2014) Fano coil-type resonance for magnetic hot-spot generation. Nano Letter 14:3166–3171

    Article  CAS  Google Scholar 

  9. Lahiri B, McMeekin SG, Khokhar AZ, De la Rue RM, Johnson NP (2010) Magnetic response of split ring resonators (SRRs) at visible frequencies. Opt Express 18:3210–3218

    Article  CAS  Google Scholar 

  10. Filonov DS, Slobozhanyuk AP, Krasnok AE, Belov PA, Nenasheva EA, Hopkins B, Miroshnichenko AE, Kivshar YS (2014) Near-field mapping of Fano resonances in all-dielectric oligomers. Appl Phys Lett 104:021104

    Article  CAS  Google Scholar 

  11. Wu DJ, Jiang SM, Liu XJ (2011) Tunable Fano resonances in three-layered bimetallic Au and Ag nanoshell. J Phys Chem C 115:23797–23801

    Article  CAS  Google Scholar 

  12. Cai DJ, Huang YH, Wang WJ, Ji WB, Chen JD, Chen ZH, Liu SD (2015) Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry. J Phys Chem C 119:4252–4260

    Article  CAS  Google Scholar 

  13. Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 3:1664–1670

    Article  CAS  Google Scholar 

  14. Lovera A, Gallinet B, Nordlander P, Martin OJF (2013) Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 5:4527–4536

    Article  CAS  Google Scholar 

  15. Feng H, Nordlander P (2007) Enhanced tunability and linewidth sharpening of plasmon resonances in hybridized metallic ring/disk nanocavities. Phys Rev B 76:245417

    Article  CAS  Google Scholar 

  16. Mirin NA, Bao K, Nordlander P (2009) Fano resonances in plasmonic nanoparticle aggregates. J Phys Chem A 113:4028–4034

    Article  CAS  Google Scholar 

  17. Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10:2694–2701

    Article  CAS  Google Scholar 

  18. Fernandes DE, Maslovski SI, Hanson GW, Silveirinha MG (2013) Fano resonances in nested wire media. Phys Rev B 88:045130

    Article  CAS  Google Scholar 

  19. Zhao K, Huo Y, Liu T, Li J, He B, Zhao T, Liu L, Li Y (2015) Manipulation of electrical field enhancements and Fano resonances in nanoellipsoid/ring plasmonic cavities. Plasmonics 10:1–8. doi:10.1007/s11468-015-9899-0

    Article  CAS  Google Scholar 

  20. Thyagarajan K, Butet J, Martin OJF (2013) Augmenting second harmonic generation using Fano resonances in plasmonic systems. Nano Letter 13:1847–1851

    Article  CAS  Google Scholar 

  21. Zhang Z, Weber-Bargioni A, Wu SW, Dhuey S, Cabrini S, Schuck PJ (2009) Manipulating nanoscale light fields with the asymmetric bowtie nano-colorsorter. Nano Letter 9:4505–4509

    Article  CAS  Google Scholar 

  22. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897

    Article  CAS  Google Scholar 

  23. Miroshnichenko AE, Luk’yanchuk B, Maier SA, Kivshar YS (2012) Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 1:837–842

    Article  CAS  Google Scholar 

  24. Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Capasso F (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 10:4680–4685

    Article  CAS  Google Scholar 

  25. Tassin P, Zhang L, Koschny T, Economou EN, Soukoulis CM (2009) Low-loss metamaterials based on classical electromagnetically induced transparency. Phys Rev Lett 102:053901

    Article  CAS  Google Scholar 

  26. Naether U, Molina MI (2011) Fano resonances in magnetic metamaterials. Phys Rev A 84:043808

    Article  CAS  Google Scholar 

  27. Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou JF (2005) Magnetic metamaterials at telecommunication and visible frequencies. Phys Rev Lett 95:203901

    Article  CAS  Google Scholar 

  28. Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9:707–715

    Article  CAS  Google Scholar 

  29. Azad AK, Dai J, Zhang W (2006) Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt Lett 5:634–636

    Article  Google Scholar 

  30. Liu H, Genov DA, Wu DM, Liu YM, Steele JM, Sun C, Zhu SN, Zhang X (2006) Magnetic plasmon propagation along a chain of connected subwavelength resonators at infrared frequencies. Physical Rev Letter 97:243902

    Article  CAS  Google Scholar 

  31. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics a route to nanoscale optical devices. Adv Mater 13:1501

    Article  CAS  Google Scholar 

  32. Maier S, Atwater HA (2005) Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J Appl Phys 98:011101

    Article  CAS  Google Scholar 

  33. Shamonina E, Kalinin VA, Ringhofer KH, Solymar L (2002) Magneto inductive waveguide. Electron Lett 38:371–373

    Article  Google Scholar 

  34. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379

    Article  CAS  Google Scholar 

  35. Hao F, Larsson EM, Ali TA, Sutherland DS, Nordlander P (2008) Shedding light on dark plasmons in gold nanorings. Chem Phys Lett 458:262–266

    Article  CAS  Google Scholar 

  36. Verellen N, Van Dorpe P, Huang CJ, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett 11:391–397

    Article  CAS  Google Scholar 

  37. Fu YH, Zhang JB, Yu YF, Luk’yanchuk B (2012) Generating and manipulating higher order Fano resonances in dual-disk ring plasmonic nanostructures. ACS Nano 6:5130–5137

    Article  CAS  Google Scholar 

  38. Sherry LJ, Chang SH, Schatz GC, Van Duyne RP, Wiley BJ, Xia YN (2005) Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett 5:2034–2038

    Article  CAS  Google Scholar 

  39. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sönnichsen C, Giessen H (2010) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10:1103–1107

    Article  CAS  Google Scholar 

  40. Wu Y, Zheng H, Li J, Wang C, Li C, Dong J (2015) Generation and manipulation of ultrahigh order plasmon resonances in visible and near-infrared region. Opt Express 8:10836–10846

    Article  Google Scholar 

  41. Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 11:3931–3988

    Google Scholar 

Download references

Acknowledgments

The work was supported by the Natural Science Basis Research Plan in Shaanxi Province of China (2011JQ1014) and Fundamental Research Funds for the Central Universities (GK201002038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Huo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Huo, Y., Liu, T. et al. Manipulation of Magnetic Fano Resonances in Double Split-Hole Disk. Plasmonics 11, 269–275 (2016). https://doi.org/10.1007/s11468-015-0057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-0057-5

Keywords

Navigation