Skip to main content
Log in

Realizing Prominent Fano Resonances in Metal-Insulator-Metal Plasmonic Bragg Gratings Side-Coupled with Plasmonic Nanocavities

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The generation of Fano resonances usually stems from the interference between a continuum and a discrete state. In this paper, we show that prominent Fano resonances can be realized in plasmonic metal-insulator-metal (MIM) Bragg gratings side-coupled with plasmonic nanocavities, where the Bragg grating provides the continuum state and the nanocavity supports the discrete state. Through tuning the position of the bandgap of surface plasmon polariton (SPP) in the Bragg gratings, the transmission Fano profiles can be modified dramatically. We find that strong coupling between the band edge mode of SPP bandgap and the resonant mode of nanocavity can lead to prominent Fano resonances with obvious transmission peak and valley. When the coupling strength between band edge mode and resonant mode becomes weak, the asymmetric Fano transmission profile vanishes. Additionally, by increasing the refractive index of the insulator, extracted sensitivity of our structures can reach 1425 nm/RIU (refractive index unit, RIU) and the maximal figure-of-merit (FOM) can be as large as 1170. Our proposed structures provide a new feasible solution in realizing Fano resonances and can become one of promising candidates for the Fano resonance-based integrated nanoscale refractive index sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fano U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124(6):1866–1878

    Article  CAS  Google Scholar 

  2. Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298

    Article  CAS  Google Scholar 

  3. Limonov MF, Rybin MV, Poddubny AN, Kivshar YS (2017) Fano resonances in photonics. Nat Photonics 11(9):543–554

    Article  CAS  Google Scholar 

  4. Cui AJ, Liu Z, Li JF, Shen THH, Xia XX, Li ZY, Gong ZJ, Li HQ, Wang BL, Li JJ, Yang HF, Li WX, Gu CZ (2015) Directly patterned substrate-free plasmonic “nanograter” structures with unusual Fano resonances. Light Sci Appl 4:e308

    Article  CAS  Google Scholar 

  5. Liu ZG, Liu Z, Li JF, Li WX, Li JJ, Gu CZ, Li ZY (2016) 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials. Sci Rep 6:27817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ren JB, Qiu WB, Chen HB, Qiu PP, Lin ZL, Wang JX, Kan Q, Pan JQ (2017) Electromagnetic field coupling characteristics in graphene plasmonic oligomers: from isolated to collective modes. Phys Chem Chem Phys 19(22):14671–14679

    Article  CAS  PubMed  Google Scholar 

  7. Ren JB, Wang GQ, Qiu WB, Lin ZL, Chen HB, Qiu PP, Wang JX, Kan Q, Pan JQ (2017) Optimization of the Fano resonance lineshape based on graphene plasmonic hexamer in mid- infrared frequencies. Nanomaterials 7(9):238

    Article  CAS  PubMed Central  Google Scholar 

  8. Zhang WF, Li WZ, Yao JP (2016) Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip. Opt Lett 41(11):2474–2477

    Article  CAS  PubMed  Google Scholar 

  9. Zhang ZC, Ng GI, Hu T, Qiu HD, Guo X, Wang WJ, Rouifed MS, Liu CY, Wang H (2017) Conversion between EIT and Fano spectra in a microring-Bragg grating coupled-resonator system. Appl Phys Lett 111(8):081105 (081101–081104)

    Article  CAS  Google Scholar 

  10. Fan SH (2002) Sharp asymmetric line shapes in side-coupled waveguide-cavity systems. Appl Phys Lett 80(6):908–910

    Article  CAS  Google Scholar 

  11. Yu Y, Heuck M, Hu H, Xue WQ, Peucheret C, Chen YH, Oxenlowe LK, Yvind K, Mork J (2014) Fano resonance control in a photonic crystal structure and its application to ultrafast switching. Appl Phys Lett 105(6):061117

    Article  CAS  Google Scholar 

  12. Mehta KK, Orcutt JS, Ram RJ (2013) Fano line shapes in transmission spectra of silicon photonic crystal resonators. Appl Phys Lett 102(8):081109 (081101–081104)

    Article  CAS  Google Scholar 

  13. Yu P, Hu T, Qiu HY, Ge FF, Yu H, Jiang XQ, Yang JY (2013) Fano resonances in ultracompact waveguide Fabry-Perot resonator side-coupled lossy nanobeam cavities. Appl Phys Lett 103(9):091104 (091101–091104)

    Article  CAS  Google Scholar 

  14. Wen KH, Hu YH, Chen L, Zhou JY, He M, Lei L, Meng ZM (2017) Tunable multimode plasmonic filter based on side-coupled ring-groove joint resonator. Plasmonics 12(2):427–431

    Article  Google Scholar 

  15. Yu Y, Si JN, Ning YY, Sun MH, Deng XX (2017) Plasmonic wavelength splitter based on a metal-insulator-metal waveguide with a graded grating coupler. Opt Lett 42(2):187–190

    Article  CAS  PubMed  Google Scholar 

  16. Shen Y, Wang GP (2008) Optical bistability in metal gap waveguide nanocavities. Opt Express 16(12):8421–8426

    Article  PubMed  Google Scholar 

  17. Taheri AN, Kaatuzian H (2015) Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt Quant Electron 47(2):159–168

    Article  CAS  Google Scholar 

  18. Wen KH, Hu YH, Chen L, Zhou JY, Lei L, Guo Z (2015) Fano resonance with ultra-high figure of merits based on plasmonic metal-insulator-metal waveguide. Plasmonics 10(1):27–32

    Article  CAS  Google Scholar 

  19. Li C, Li SL, Wang YL, Jiao RZ, Wang LL, Yu L (2017) Multiple Fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor. IEEE Photonics J 9(6):4801509

    Google Scholar 

  20. Lu H, Liu XM, Mao D (2012) Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems. Phys Rev A 85(5):053803 (053801–053807)

    Article  CAS  Google Scholar 

  21. Qiu PP, Qiu WB, Lin ZL, Chen HB, Ren JB, Wang JX, Kan Q, Pan JQ (2017) Dynamically tunable plasmon-induced transparency in on-chip graphene-based asymmetrical nanocavity-coupled waveguide system. Nanoscale Res Lett 12:374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao YY, Zhan SP, Liu Q, Liu YX (2016) Controllable plasmonic sensing based on Fano resonance in a cavity coupled defective MDM waveguide. J Phys D Appl Phys 49(26):265109 (265101–265106)

    Article  CAS  Google Scholar 

  23. Yun BF, Zhang RH, Hu GH, Cui YP (2016) Ultra sharp Fano resonances induced by coupling between plasmonic stub and circular cavity resonators. Plasmonics 11(4):1157–1162

    Article  Google Scholar 

  24. Yang JH, Song XK, Chen Z, Cui L, Yang S, Yu L (2017) Tunable multi-Fano resonances in MDM-based side-coupled resonator system and its application in nanosensor. Plasmonics 12(6):1665–1672

    Article  CAS  Google Scholar 

  25. Meng Z-M, Liang A, Li Z-Y (2017) Fano resonances in photonic crystal nanobeams side-coupled with nanobeam cavities. J Appl Phys 121(19):193102 (193101–193106)

    Article  CAS  Google Scholar 

  26. Zhou YS, Gu BY, Wang HY (2010) Band-gap structures of surface-plasmon polaritons in a subwavelength metal slit filled with periodic dielectrics. Phys Rev A 81(1):015801 (015801–015804)

    Article  CAS  Google Scholar 

  27. Li C, Zhou YS, Wang HY (2012) Plasmonic band structures and optical properties of subwavelength metal/dielectric/metal Bragg waveguides. Opt Express 20(7):7726–7740

    Article  PubMed  Google Scholar 

  28. Yun BF, Hu GH, Zhang RH, Cui YP (2014) Design of a compact and high sensitive refractive index sensor base on metal-insulator-metal plasmonic Bragg grating. Opt Express 22(23):28662-28670

  29. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House Norwood, MA

    Google Scholar 

  30. Kedenburg S, Vieweg M, Gissibl T, Giessen H (2012) Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt Mater Express 2(11):1588–1611

    Article  CAS  Google Scholar 

Download references

Funding

This study received a financial support from National Natural Science Foundation of China (Grant Nos. 11604057, 11434017 and 81470661), Science and Technology Program of Guangdong Province (2016B010126005), One-Hundred Talents Program of Guangdong University of Technology (220418073). Z.M.M. receive a support from Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (KQNCX065). F. Q. receive a support from the National Natural Science Foundation of China (Grant No. 61705085) and the Guangdong Innovative and Entrepreneurial Research Team Program (Grant No.2016ZT06D081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zi-Ming Meng or Fei Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, ZM., Qin, F. Realizing Prominent Fano Resonances in Metal-Insulator-Metal Plasmonic Bragg Gratings Side-Coupled with Plasmonic Nanocavities. Plasmonics 13, 2329–2336 (2018). https://doi.org/10.1007/s11468-018-0756-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-018-0756-9

Keywords

Navigation