Skip to main content
Log in

Dark Plasmon of Adjacent Silver Hexagonal Nanoplates Dimer

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Silver hexagonal nanoplates (HNPs) were fabricated by solution phase method. It is observed that most of hexagonal nanoplates prefer that they be placed adjacent to each other, when they are deposited on glass substrate. Hence, the near-field enhancement in silver hexagonal nanoplate dimer is studied in detail using the discreet dipole approximation method. The effect of interparticle separation (dimer gap) and surrounding medium on the distribution pattern and magnitude of the near-field enhancement is analyzed. Our results show that there are three plasmonic bands for dimer separation 2 and 4 nm. The obtained results show that the highest value of the figure of merit (Fom) is about 15 which is related to third band of dimer with gaps 4 nm. Moreover, this mode shows extreme sensitivity to the interparticle gap distance and surrounding refractive index, which shows great promise for high sensitivity localized surface plasmon resonance (LSPR) sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agrawal A, Kriegel I, Milliron DJ (2015) J Phys Chem C 119:6227–6238

    Article  CAS  Google Scholar 

  2. Kelly KL, Coronado E, Zhao LL, Shatz GC (2003) J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  3. Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267

    Article  CAS  Google Scholar 

  4. Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS et al (2007) Nano Lett 7:3759

    Article  CAS  Google Scholar 

  5. Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824

    Article  CAS  Google Scholar 

  6. Azarian A, Babaei F (2016) J Appl Phys 119:203103

    Article  Google Scholar 

  7. Ye J, Chen C, Van Roy W, Van Dorpe P (2008) Nanotechnology 19:325702

    Article  Google Scholar 

  8. Charles DE, Aherne D, Gara M, Ledwith DM et al (2009) ACS Nano 4:55–64

    Article  Google Scholar 

  9. Zhu W, Esteban R, Borisov AG, Baumberg JJ et al. (2016) Nat Commun 11495 doi: 10.1038

  10. An J, Tang B, Ning X, Zhou J et al (2007) J Phys Chem C 111:18055–18059

    Article  CAS  Google Scholar 

  11. Amendola V, Bakr OM, Stellacci F (2010) Plasmonics 5:85–97

    Article  CAS  Google Scholar 

  12. Draine BT, Flatau PJ (1994) J Opt Soc Am A 11:1491–1499

    Article  Google Scholar 

  13. Goodman JJ, Draine BT, Flatau PJ (1991) Op Lett 16:1198–1200

    Article  CAS  Google Scholar 

  14. Draine BT, Goodman JJ (1993) Astrophys J 405:685–697

    Article  Google Scholar 

  15. Draine BT, Flatau PJ (2012) User guide for the discrete dipole approximation code DDSCAT 7.2 http://arxiv.org/abs/1202.3424

  16. Guerrero-Martínez A, Alonso-Gómez JL, Auguié B, Cid MM, Liz-Marzán LM (2011) Nano Today 6:381–400

    Article  Google Scholar 

  17. Palik ED (1985) Handbook of optical constants of solids. Academic Press, New York

    Google Scholar 

  18. Francs GC, Derom S, Vincent R, Bouhelier A, Dereux A (2012) Int J Opt. Article ID 175162, 8 pages doi:10.1155/2012/175162

  19. Evlyukhin AB, Fischer T, Reinhardt C, Chichkov BN (2016) Phys Rev B 94:205434

    Article  Google Scholar 

  20. Yi Z, Niu G, Chen J, Luo J et al (2016) Plasmonics 11:37–44

    Article  CAS  Google Scholar 

  21. Albella P, Shibanuma T, Maier SA (2015) Scientific Repo Rts 5:18322

    Article  CAS  Google Scholar 

  22. Poutrina E, Urbas A (2014) J Opt 16:114005

    Article  Google Scholar 

  23. Mayer KM, Hafner JH (2011) Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of this work by the University of Qom and the Hi-Tech Center is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Azarian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarian, A. Dark Plasmon of Adjacent Silver Hexagonal Nanoplates Dimer. Plasmonics 13, 687–695 (2018). https://doi.org/10.1007/s11468-017-0561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0561-x

Keywords

Navigation