Skip to main content
Log in

Gain-Assisted Propagation and Angular Response of Surface Plasmon Resonance in Nonlinear Kretschmann Configuration

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The present study investigates the optical characteristics and angular response of gain-assisted surface plasmon resonance incorporating a nonlinear Kretschmann configuration. Nonlinear susceptibility of two-level atoms is used to describe the gain and nonlinear characteristics of amplifying medium. The structure is investigated and compared in both linear and nonlinear regimes. Our theory presents surface plasmon polaritons (SPPs) amplification accounting for saturation of linear gain by nonlinear losses. Reflectivity curve of the Kretschamnn configuration, attenuation constant, propagation length, and magnetic field intensity of plasmonic wave at the interface provide direct proofs of saturated gain induced by nonlinear absorption loss. Linear analysis predicts enhanced total reflection (ETR) in the presence of gain while in nonlinear regime, no ETR phenomenon occurs due to nonlinear loss absorption. Our analysis verifies that in the presence of nonlinear absorption loss, a saturation tendency of propagation length and plasmonic intensity is inevitable which is coincident with the practical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Maier SA (2007) Plasmonics: fundamentals and applications. Springer

  2. Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Surface-plasmon circuitry. Phys Today 61:44–50

    Article  Google Scholar 

  3. Berini P (2006) Figures of merit for surface plasmon waveguides. Opt Express 042:030–13

    Google Scholar 

  4. Zia R, Selker M, Catrysse P, Brongersma ML (2004) Geometries and materials for sub-wavelength surface plasmon modes. Opt Soc Am A 21:2442–2446

    Article  Google Scholar 

  5. Leon ID, Berini P (2010) Amplification of long-range surface plasmons by a dipolar gain medium. Nat Photonics 37:1–6

    Google Scholar 

  6. van Beijnum F, van Veldhoven PJ, Geluk EJ, de Dood MJA, t Hooft GW, van Exter MP (2013) Surface plasmon lasing observed in metal hole arrays. Phys Rev Lett 110:206:802

    Google Scholar 

  7. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature Lett 461:629–632

    Article  CAS  Google Scholar 

  8. Bolger PM, Dickson W, Krasavin AV, Liebscher L, Hickey SG, Skryabin DV, Zayats AV (2010) Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Opt Lett 8:1197–1199

    Article  Google Scholar 

  9. Plotz GA, Simon HJ, Tucciarone JM (1979) Enhanced total reflection with surface plasmons. J Opt Soc Am 69:419–422

    Article  Google Scholar 

  10. Sudarkin AN, Demkovich PA (1989) Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium. Sov Phys Tech Phys 34:764–766

    Google Scholar 

  11. Nezhad MP, Tetz K, Fainman Y (2004) Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt Express 12:4072–4079

    Article  Google Scholar 

  12. Noginov MA, Zhu G, Mayy M, Ritzo BA, Noginova N, Podolskiy VA (2008b) Stimulated emission of surface plasmon polaritons. Phys Rev Lett 101:226:806

  13. Athanasopoulos C, Mattheakis M, Tsironis G (2013) Enhanced surface plasmon polariton propagation induced by active dielectrics. arXiv:1311.5722

  14. Gather MC, Meerholz K, Danz N, Leosson K (2010) Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nat Photonics 4:457–461

    Article  CAS  Google Scholar 

  15. Ambati A, Nam SH, Ulin-Avila E, Genov A, Bartal G, Zhang X (2008) Observation of stimulated emission of surface plasmon polaritons. Nano Lett 8:3998

    Article  CAS  Google Scholar 

  16. Kena-Cohen S, Stavrinou PN, Bradley DDC, Maier SA (2013) Confined surface plasmon polariton amplifiers. Nano Lett 13:1323–1329

    Article  CAS  Google Scholar 

  17. Marini A, Gorbach AV, Skryabin DV, Zayats AV (2009) Amplification of surface plasmon polaritons in the presence of nonlinearity and spectral signatures of threshold crossover. Opt Lett 34:2864–2866

    Article  CAS  Google Scholar 

  18. Adelpour Z, Ghorbani A, Ahmadi V (2014) Amplification of surface plasmon polaritons in nonlinear medium with full saturation susceptibility model. J Opt Soc Am B 31:1672–1675

    Article  CAS  Google Scholar 

  19. Boyd RW (2003) Nonlinear Optics. Academic Press

  20. Kretschmann EZ (1971) Die bestimmung optischer konstanten von metallen durch oberflchen plasmaschwingungen. Physik 241:313–324

    Article  CAS  Google Scholar 

  21. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  22. Seidel J, Grafstrom S, Eng L (2005) Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys Rev Lett 94:177:401

    Google Scholar 

  23. Noginov MA, Podolskiy VA, Zhu G, Mayy M, Bahoura M, Adegoke JA, Ritzo BA, Reynolds K (2008a) Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt Express 16:1385

  24. Sirtori C, Gmachl C, Capasso F, Faist J, Sivco DL, Hutchinson AL, Cho AY (1998) Long-wavelength semiconductor lasers with waveguides based on surface plasmons. Opt Lett 23:1366–1368

  25. Chen YJ, Carter GM (1983) Attenuated total reflection calculations for nonlinear surface plasmon dispersion. Solid State Commun 45:277–280

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Sadeghi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, M., Adelpour, Z. Gain-Assisted Propagation and Angular Response of Surface Plasmon Resonance in Nonlinear Kretschmann Configuration. Plasmonics 12, 1107–1112 (2017). https://doi.org/10.1007/s11468-016-0364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-016-0364-5

Keywords

Navigation