Skip to main content
Log in

Tunable Multichannel Plasmonic Filter Based on Coupling-Induced Mode Splitting

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Combining with tight-binding approach, novel multichannel plasmonic filters are designed by inserting identical coupled cavities between metal-insulator-metal waveguides. We show that the eigenmodes of the plasmonic cavities will asymmetrically split under their coupling with each other. Such an asymmetrical mode splitting provides strongly correlated transmission channels which can be manipulated simultaneously. All channels will red shift or blue shift with the changing of the lengths or widths of the rectangular cavities. The intervals of the channels can be tuned by adjusting the coupling strength of the cavities. Both finite difference time domain method and transfer matrix method are used to investigate the considered plasmonic system. Our results may have important applications in the fields of high-density plasmonic integration circuits and nonlinear plasmonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830

    Article  CAS  Google Scholar 

  2. Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin

    Google Scholar 

  3. Genet C, Ebbesen TW (2007) Light in tiny holes. Nature 445:39–46

    Article  CAS  Google Scholar 

  4. Lu H, Liu XM, Wang LR, Gong YR, Mao D (2011) Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt Express 19:2910–2915

    Article  CAS  Google Scholar 

  5. Veronis G, Fan S (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87:131102

    Article  Google Scholar 

  6. Gao HT, Shi HF, Wang CT, Du CL, Luo XG, Deng QL, Lin XD, Yao HM (2005) Surface plasmon polaritons propagation and combination in Y-shaped metallic channels. Opt Express 13:10795–10800

    Article  Google Scholar 

  7. Han ZH, He SL (2007) Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter. Opt Commun 278:199–203

    Article  CAS  Google Scholar 

  8. Zhao HW, Guang HJT (2008) Novel optical directional coupler based on surface plasmon polaritons. Phys E 40:3025–3029

    Article  Google Scholar 

  9. Han ZH, Liu L, Forsberg E (2006) Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons. Opt Commun 259:690–695

    Article  CAS  Google Scholar 

  10. Ditlbacher H, Krenn JR, Schider G, Leitner A, Aussenegg FR (2002) Two-dimensional optics with surface plasmon polaritons. Appl Phys Lett 81:1762–1764

    Article  CAS  Google Scholar 

  11. Park J, Kim H, Lee B (2008) High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating. Opt Express 16:413–425

    Article  Google Scholar 

  12. Han ZH, Forsberg E, He SL (2007) Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides. IEEE Photon Technol Lett 19:91–93

    Article  Google Scholar 

  13. Neutens P, Dorpe PV, Vlaminck I, Lagae L, Borghs G (2009) Electrical detection of confined gap plasmons in metal-insulator-metal waveguides. Nat Photonics 3:283–286

    Article  CAS  Google Scholar 

  14. Zia R, Schuller J, Chandran BM (2006) Plasmonics: the next chip-scale technology. Mater Today 9:20–27

    Article  CAS  Google Scholar 

  15. Lin XS, Huang XG (2008) Tooth-shaped plasmonic waveguide filters with nanometeric sizes. Opt Lett 33:2874–2876

    Article  Google Scholar 

  16. Xiao SS, Liu L, Qiu M (2006) Resonator channel drop filters in a plasmon-polaritons metal. Opt Express 14:2932–2937

    Article  Google Scholar 

  17. Hosseini A, Massoud Y (2007) Nanoscale surface Plasmon based resonator using rectangular geometry. Appl Phys Lett 90:181102

    Article  Google Scholar 

  18. Wang TB, Wen XW, Yin CP, Wang HZ (2009) The transmission characteristics of surface plasmon polaritons in ring resonator. Opt Express 17:24096–24101

    Article  CAS  Google Scholar 

  19. Noual A, Akjouj A, Pennec Y, Gillet JN, Djafari-Rouhani B (2009) Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths. New J Phys 11:103020

    Article  Google Scholar 

  20. Lu H, Liu XM, Gong YK, Mao D, Wang LR (2011) Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities. Opt Express 19:12885–12890

    Article  Google Scholar 

  21. Gong YK, Liu XM, Wang LR (2010) High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings. Opt Lett 35:285–287

    Article  Google Scholar 

  22. Luo X, Zou XH, Li XF, Zhou Z, Pan W, Yan LS, Wen KH (2013) High-uniformity multichannel plasmonic filter using linearly lengthened insulators in metal-insulator-metal waveguide. Opt Lett 38:1585–1587

    Article  Google Scholar 

  23. Lu H, Liu XM, Wang GX, Mao D (2012) Tunable high-channel-count bandpass plasmonic filters based on an analogue of electromagnetically induced transparency. Nanotechnology 23:444003

    Article  Google Scholar 

  24. Lidorikis E, Sigalas MM, Economou EN, Soukoulis CM (1998) Tight-binding parametrization for photonic band gap materials. Phys Rev Lett 81:1405–1408

    Article  CAS  Google Scholar 

  25. Bayindir M, Temelkuran B, Ozbay E (2000) Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys Rev Lett 84:2140–2143

    Article  CAS  Google Scholar 

  26. Chen YH, Dong JW, Wang HZ (2006) Omnidirectional resonance modes in photonic crystal heterostructures containing single-negative materials. J Opt Soc Am B 23:2237–2240

    Article  CAS  Google Scholar 

  27. Palik GP (1985) Handbook of optical constants of solids. Academic, Boston

    Google Scholar 

  28. Zhang Q, Huang XG, Lin XS, Tao J, Jin XP (2009) A subwavelength coupler-type MIM optical filter. Opt Express 17:7549–7554

    Article  CAS  Google Scholar 

  29. Tao J, Huang XG, Zhu JH (2010) A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nano-capillary resonators. Opt Express 18:11111–11116

    Article  Google Scholar 

  30. Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House Publishers, Boston

    Google Scholar 

  31. Bethune DS (1989) Optical harmonic generation and mixing in multilayer media: analysis using optical transfer matrix techniques. J Opt Soc Am B 6:910–916

    Article  CAS  Google Scholar 

  32. Born M, Wolf E (1999) Principles of optics. University Cambridge, Cambridge

    Book  Google Scholar 

  33. Ashcroft NW, Mermin ND (1976) Solid State Physics. Sounders, Philadelphia

    Google Scholar 

  34. Khitrova G, Gibbs HM (1999) Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev Mod Phys 71:1591–1639

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 11274126) and Natural Science Foundation of Guangdong Province of China (Grant No. 9151063101000040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihang Chen.

Additional information

Zhao Zhang and Fenghua Shi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Shi, F. & Chen, Y. Tunable Multichannel Plasmonic Filter Based on Coupling-Induced Mode Splitting. Plasmonics 10, 139–144 (2015). https://doi.org/10.1007/s11468-014-9787-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-014-9787-z

Keywords

Navigation