Skip to main content
Log in

Plasmonic-induced transparency in a MIM waveguide with two side-coupled cavities

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate numerically the classical analogue of electromagnetically induced transparency (EIT) in a nanoplasmonic structure constituted by two side-coupled cavities. Two configurations are considered: (1) two cavities connected symmetrically on each side of the waveguide; (2) two cavities situated on the same side. In the first case, the EIT resonance occurs as a consequence of the destructive interference between the two cavities (playing the role of two coupled radiative oscillators), whereas in the second situation, the phenomenon arises due to a coupling between dark and radiative resonators. By detuning the sizes of the two cavities (i.e., the length difference ΔL, keeping their width w similar), we show that the position, width and quality factor of the EIT resonance depend strongly on ΔL. The effect of the metal gap separating the two cavities from the waveguide is also discussed. These results may have important applications for designing integrated devices such as narrow-frequency optical filters, novel sensors and high-speed switches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  ADS  Google Scholar 

  2. S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

    Article  Google Scholar 

  3. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594 (1999)

    Article  ADS  Google Scholar 

  4. C. Liu, Z. Dutton, C.H. Behroozi, L.V. Hau, Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490 (2001)

    Article  ADS  Google Scholar 

  5. I. Novikova, R.L. Walsworth, Y. Xiao, Electromagnetically induced transparency-based slow and stored light in warm atoms. Laser Photon. Rev. 6, 333 (2012)

    Article  Google Scholar 

  6. X. Piao, S. Yu, N. Park, Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator. Opt. Express 20, 18994 (2012)

    Article  ADS  Google Scholar 

  7. Z. Han, S.I. Bozhevolnyi, Plasmon-induced transparency with detuned ultracompact Fabry–Perot resonators in integrated plasmonic devices. Opt. Express 19, 3251 (2011)

    Article  ADS  Google Scholar 

  8. A. Mahigir, P. Dastmalchi, W. Shin, S. Fan, G. Veronis, Plasmonic coaxial waveguide-cavity devices. Opt. Express 23, 20549 (2015)

    Article  ADS  Google Scholar 

  9. R. Taubert, M. Hentshel, J. Kastel, H. Giessen, Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett. 12, 1367 (2012)

    Article  ADS  Google Scholar 

  10. J. Wu, B. Jin, J. Wan, L. Liang, Y. Zhang, T. Jia, C. Cao, L. Kang, W. Xu, J. Chen, P. Wu, Superconducting terahertz metamaterials mimicking electromagnetically induced transparency. Appl. Phys. Lett. 99, 161113 (2011)

    Article  ADS  Google Scholar 

  11. X. Zhang, N. Xu, K. Qu, Z. Tian, R. Singh, J. Han, G.S. Agarwal, W. Zhang, Electromagnetically induced absorption in a three-resonator metasurface system. Sci. Rep. 5, 10737 (2015)

    Article  ADS  Google Scholar 

  12. S. Fan, J.D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002)

    Article  ADS  Google Scholar 

  13. M.F. Yanik, W. Suh, Z. Wang, S. Fan, Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett. 93, 233903 (2004)

    Article  ADS  Google Scholar 

  14. X. Yang, M. Yu, D.-L. Kwong, C.W. Wong, All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys. Rev. Lett. 102, 173902 (2009)

    Article  ADS  Google Scholar 

  15. J. Zhou, D. Mu, J. Yang, W. Han, X. Di, Coupled-resonator-induced transparency in photonic crystal waveguide resonator systems. Opt. Express 19, 4856 (2011)

    Article  ADS  Google Scholar 

  16. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, S. Noda, Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photon. 6, 56 (2012)

    Article  ADS  Google Scholar 

  17. C.H. Raymond Ooi, C.H. Kam, Controlling quantum resonances in photonic crystals and thin films with electromagnetically induced transparency. Phys. Rev. B 81, 195119 (2010)

    Article  ADS  Google Scholar 

  18. B.B. Li, Y.F. Xiao, C.L. Zou, X.F. Jiang, Y.C. Liu, F.W. Sun, Y. Li, Q. Gong, Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators. Appl. Phys. Lett. 100, 021108 (2012)

    Article  ADS  Google Scholar 

  19. W. Ding, B. Luk’yanchuk, C.-W. Qiu, Ultrahigh-contrast-ratio silicon Fano diode. Phys. Rev. A 85, 025806 (2012)

    Article  ADS  Google Scholar 

  20. P. Tassin, L. Zhang, T. Koschny, C.M. Soukoulis, Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett. 102, 053901 (2009)

    Article  ADS  Google Scholar 

  21. Y. Yang, S. Saurabh, J. Ward, S.N. Chormaic, Coupled-mode-induced transparency in aerostatically tuned microbubble whispering-gallery resonators. Opt. Lett. 40, 1834 (2015)

    Article  ADS  Google Scholar 

  22. A. Mouadili, E.H. El Boudouti, A. Soltani, A. Talbi, A. Akjouj, B. Djafari-Rouhani, Theoretical and experimental evidence of Fano-like resonances in simple monomode photonic circuits. J. Appl. Phys. 113, 164101 (2013)

    Article  ADS  Google Scholar 

  23. A. Mouadili, E.H. El Boudouti, A. Soltani, A. Talbi, B. Djafari-Rouhani, A. Akjouj, K. Haddadi, Electromagnetically induced absorption in detuned stub waveguides: a simple analytical and experimental model. J. Phys.: Condens. Matter 26, 505901 (2014)

    Google Scholar 

  24. E.H. El Boudouti, T. Mrabti, H. Al-Wahsh, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, Transmission gaps and Fano resonances in an acoustic waveguide: analytical model. J. Phys.: Condens. Matter 20, 255212 (2008)

    ADS  Google Scholar 

  25. A. Santillan, S.I. Bozhevolnyi, Acoustic transparency and slow sound using detuned acoustic resonators. Phys. Rev. B 84, 064304 (2011)

    Article  ADS  Google Scholar 

  26. Z. Zhang, L. Zhang, P. Yin, X. Han, Coupled resonator induced transparency in surface plasmon polariton gap waveguide with two side-coupled cavities. Phys. B 446, 55 (2014)

    Article  ADS  Google Scholar 

  27. A. Noual, O. El Abouti, E.H. El Boudouti, A. Akjouj, B. Djafari-Rouhani, Y. Pennec, Proceedings of the Mediterranean Conference on Information and Communication Technologies, 2015, Plasmonic Analogue of Electromagnetically Induced Transparency in Detuned Nano-cavities Coupled to a Waveguide. Lecture Notes in Electrical Engineering, vol. 380, pp. 539–544 (2016)

  28. E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985)

    Google Scholar 

  29. M.L. Bah, A. Akjouj, L. Dobrzynski, Response functions in layered dielectric media. Surf. Sci. Rep. 16, 95–132 (1992)

    Article  ADS  Google Scholar 

  30. A. Noual, Y. Pennec, A. Akjouj, B. Djafari-Rouhani, L. Dobrzynski, Nanoscale plasmon waveguide including cavity resonator. J. Phys.: Condens. Matter 21, 375301 (2009)

    Google Scholar 

  31. A. Noual, A. Akjouj, Y. Pennec, J.N. Gillet, B. Djafari-Rouhani, Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides for demultiplexing of the telecommunication wavelengths. New J. Phys. 11, 103020 (2009)

    Article  ADS  Google Scholar 

  32. M. Dong, M. Tomes, M. Eichenfield, M. Jarrahi, T. Carmon, Proceeding of Comsol Conference in Boston (2013)

  33. Z. Chen, R. Hu, L. Cui, L. Yu, L. Wang, J. Xiao, Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 320, 6 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding was partially provided by the University Mohamed Premier, Oujda, Morocco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnane Noual.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noual, A., Abouti, O.E., El Boudouti, E.H. et al. Plasmonic-induced transparency in a MIM waveguide with two side-coupled cavities. Appl. Phys. A 123, 49 (2017). https://doi.org/10.1007/s00339-016-0638-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0638-y

Keywords

Navigation