Skip to main content
Log in

Defect repairing in two-dimensional transition metal dichalcogenides

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) have stimulated enormous research interest due to rich phase structure, high theoretical carrier mobility and layer-dependent bandgap. In view of the close correlation between defects and properties in 2D TMDCs, more attentions have been paid on the defect engineering in recent years, however the mechanism is still unclear. Herein, we review the critical progress of defect engineering and provide an extensive way to modulate the properties depressed by defects. To insight into the defect engineering, we firstly introduce two common kinds of defects during the growth progress of TMDCs and the possible distribution of energy levels those defects could induce. Then, various methods to improve point defects and grain boundaries during the period of growth are discussed intensively, with the assistance of which more large-area TMDCs films can be obtained. Considering the defects in TMDCs are inevitable regardless of concentration, we also highlight strategies to heal the defects after growth. Through dry methods or wet methods, the chalcogen vacancies can be repaired and thus, the performance of electronic device would be significantly enhanced. Finally, we propose the challenges and prospective for defect engineering in 2D TMDCs materials to support the optimization of device and lead them to wide applied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Geim, Graphene: Status and prospects, Science 324(5934), 1530 (2009)

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)

    Article  ADS  Google Scholar 

  3. K. M. Wyss, D. X. Luong, and J. M. Tour, Large-scale syntheses of 2D materials: Flash Joule heating and other methods, Adv. Mater. 34(8), 2106970 (2022)

    Article  Google Scholar 

  4. J. Li, M. Chen, A. Samad, H. Dong, A. Ray, J. Zhang, X. Jiang, U. Schwingenschlögl, J. Domke, C. Chen, Y. Han, T. Fritz, R. S. Ruoff, B. Tian, and X. Zhang, Wafer-scale single-crystal monolayer graphene grown on sapphire substrate, Nat. Mater. 21(7), 740 (2022)

    Article  ADS  Google Scholar 

  5. Y. Zhang, W. Shen, S. Wu, W. Tang, Y. Shu, K. Ma, B. Zhang, P. Zhou, and S. Wang, High-speed transition-metal dichalcogenides based Schottky photodiodes for visible and infrared light communication, ACS Nano 16(11), 19187 (2022)

    Article  Google Scholar 

  6. L. Hou, X. Cui, B. Guan, S. Wang, R. Li, Y. Liu, D. Zhu, and J. Zheng, Synthesis of a monolayer fullerene network, Nature 606(7914), 507 (2022)

    Article  ADS  Google Scholar 

  7. G. Murali, J. K. R. Modigunta, Y. H. Park, J. H. Lee, J. Rawal, S. Y. Lee, I. In, and S. J. Park, A review on MXene synthesis, stability, and photocatalytic applications, ACS Nano 16(9), 13370 (2022)

    Article  Google Scholar 

  8. A. E. Naclerio and P. R. Kidambi, A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications, Adv. Mater. 35(6), 2207374 (2023)

    Article  Google Scholar 

  9. Z. Zhang, P. Yang, M. Hong, S. Jiang, G. Zhao, J. Shi, Q. Xie, and Y. Zhang, Recent progress in the controlled synthesis of 2D metallic transition metal dichalcogenides, Nanotechnology 30(18), 182002 (2019)

    Article  ADS  Google Scholar 

  10. H. Ma, Q. Qian, B. Qin, Z. Wan, R. Wu, B. Zhao, H. Zhang, Z. Zhang, J. Li, Z. Zhang, B. Li, L. Wang, and X. Duan, Controlled synthesis of ultrathin PtSe2 nanosheets with thickness-tunable electrical and magnetoelectrical properties, Adv. Sci. (Weinh.) 9(1), 2103507 (2022)

    Google Scholar 

  11. Y. Wang, J. C. Kim, Y. Li, K. Y. Ma, S. Hong, M. Kim, H. S. Shin, H. Y. Jeong, and M. Chhowalla, P-type electrical contacts for 2D transition-metal dichalcogenides, Nature 610(7930), 61 (2022)

    Article  ADS  Google Scholar 

  12. F. Li, R. Tao, B. Cao, L. Yang, and Z. Wang, Manipulating the light-matter interaction of PtS/MoS2 p−n junctions for high performance broadband photodetection, Adv. Funct. Mater. 31(36), 2104367 (2021)

    Article  Google Scholar 

  13. S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(8), 17033 (2017)

    Article  ADS  Google Scholar 

  14. L. Pi, L. Li, K. Liu, Q. Zhang, H. Li, and T. Zhai, Recent progress on 2D noble-transition-metal dichalcogenides, Adv. Funct. Mater. 29(51), 1904932 (2019)

    Article  Google Scholar 

  15. Q. Liang, Z. Chen, Q. Zhang, and A. T. S. Wee, Pentagonal 2D transition metal dichalcogenides: PdSe2 and beyond, Adv. Funct. Mater. 32(38), 2203555 (2022)

    Article  Google Scholar 

  16. B. Cao, Z. Ye, L. Yang, L. Gou, and Z. Wang, Recent progress in van der Waals 2D PtSe2, Nanotechnology 32(41), 412001 (2021)

    Article  ADS  Google Scholar 

  17. Y. Gao, S. Wang, B. Wang, Z. Jiang, and T. Fang, Recent progress in phase regulation, functionalization, and biosensing applications of polyphase MoS2, Small 18(34), 2202956 (2022)

    Article  Google Scholar 

  18. X. Zhu, Y. Chen, Z. Liu, Y. Han, and Z. Qiao, Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials, Front. Phys. 18(2), 23302 (2023)

    Article  ADS  Google Scholar 

  19. Y. Y. Wang, F. P. Li, W. Wei, B. B. Huang, and Y. Dai, Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides, Front. Phys. 16(1), 13501 (2021)

    Article  ADS  Google Scholar 

  20. Q. Liang, Q. Zhang, X. Zhao, M. Liu, and A. T. S. Wee, Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities, ACS Nano 15(2), 2165 (2021)

    Article  Google Scholar 

  21. Y. Gong, Z. Lin, Y. X. Chen, Q. Khan, C. Wang, B. Zhang, G. Nie, N. Xie, and D. Li, Two-dimensional platinum diselenide:Synthesis, Emerging applications, and future challenges, Nano-Micro Lett. 12(1), 174 (2020)

    Article  ADS  Google Scholar 

  22. E. Norouzzadeh, S. Mohammadi, and M. Moradinasab, Tunneling FET based on defect-free, vacancy-defected, and passivated monolayer PtSe2 channel: A first principles study, Mater. Sci. Semicond. Process. 138, 106258 (2022)

    Article  Google Scholar 

  23. A. Mahmood, G. Lu, X. Wang, Y. Wang, X. Xie, and J. Sun, Investigating the stability and role of defects in vertically aligned WS2/MoS2 heterojunctions on OER activity using first principles study, J. Power Sources 551, 232208 (2022)

    Article  Google Scholar 

  24. P. M. M. C. de Melo, Z. Zanolli, and M. J. Verstraete, Optical signatures of defect centers in transition metal dichalcogenide monolayers, Adv. Quant. Technol. 4(3), 2000118 (2021)

    Article  Google Scholar 

  25. Y. Yu, X. Zhang, Z. Zhou, Z. Zhang, Y. Bao, H. Xu, L. Lin, Y. Zhang, and X. Wang, Microscopic pump-probe optical technique to characterize the defect of monolayer transition metal dichalcogenides, Photon. Res. 7(7), 711 (2019)

    Article  Google Scholar 

  26. K. Wu, H. Zhong, Q. Guo, J. Tang, Z. Yang, L. Qian, S. Yuan, S. Zhang, and H. Xu, Revealing the competition between defect-trapped exciton and band-edge exciton photoluminescence in monolayer hexagonal WS2, Adv. Opt. Mater. 10(6), 2101971 (2022)

    Article  Google Scholar 

  27. D. H. Lien, S. Z. Uddin, M. Yeh, M. Amani, H. Kim, J. W. III Ager, E. Yablonovitch, and A. Javey, Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors, Science 364(6439), 468 (2019)

    Article  ADS  Google Scholar 

  28. P. C. Shen, Y. Lin, C. Su, C. McGahan, A. Y. Lu, X. Ji, X. Wang, H. Wang, N. Mao, Y. Guo, J. H. Park, Y. Wang, W. Tisdale, J. Li, X. Ling, K. E. Aidala, T. Palacios, and J. Kong, Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition, Nat. Electron. 5(1), 28 (2021)

    Article  Google Scholar 

  29. B. Wen, D. N. Luo, L. L. Zhang, X. L. Li, X. Wang, L. L. Huang, X. Zhang, and D. F. Diao, Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges, Front. Phys. 18(3), 33306 (2023)

    Article  ADS  Google Scholar 

  30. J. Li, T. Joseph, M. Ghorbani-Asl, S. Kolekar, A. V. Krasheninnikov, and M. Batzill, Edge and point-defect induced electronic and magnetic properties in monolayer PtSe2, Adv. Funct. Mater. 32(18), 2110428 (2022)

    Article  Google Scholar 

  31. P. Li, Y. Bu, L. Wang, C. Wang, J. Huang, K. Tong, Y. Chen, J. He, Z. Zhao, B. Xu, Z. Liu, G. Gao, A. Nie, H. Wang, and Y. Tian, In situ observation of fracture along twin boundaries in boron carbide, Adv. Mater., doi: https://doi.org/10.1002/adma.202204375 (2022)

  32. H. Yun, M. Topsakal, A. Prakash, B. Jalan, J. S. Jeong, T. Birol, and K. A. Mkhoyan, Metallic line defect in wide-bandgap transparent perovskite BaSnO3, Sci. Adv. 7(3), eabd4449 (2021)

    Article  ADS  Google Scholar 

  33. S. Feng, J. Tan, S. Zhao, S. Zhang, U. Khan, L. Tang, X. Zou, J. Lin, H. M. Cheng, and B. Liu, Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules, Small 16(35), 2003357 (2020)

    Article  Google Scholar 

  34. J. Li, S. Wang, Q. Jiang, H. Qian, S. Hu, H. Kang, C. Chen, X. Zhan, A. Yu, S. Zhao, Y. Zhang, Z. Chen, Y. Sui, S. Qiao, G. Yu, S. Peng, Z. Jin, and X. Liu, Single-crystal MoS2 monolayer wafer grown on Au(111) film substrates, Small 17(30), 2100743 (2021)

    Article  Google Scholar 

  35. P. Yang, Y. Shan, J. Chen, G. Ekoya, J. Han, Z. J. Qiu, J. Sun, F. Chen, H. Wang, W. Bao, L. Hu, R. J. Zhang, R. Liu, and C. Cong, Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates, Nanoscale 12(3), 1958 (2020)

    Article  Google Scholar 

  36. F. J. Urbanos, S. Gullace, and P. Samorì, MoS2 defect healing for high-performance chemical sensing of polycyclic aromatic hydrocarbons, ACS Nano 16(7), 11234 (2022)

    Article  Google Scholar 

  37. T. Liu, N. Peng, X. Zhang, R. Zheng, M. Xia, H. Yu, M. Shui, Y. Xie, and J. Shu, Controllable defect engineering enhanced bond strength for stable electrochemical energy storage, Nano Energy 79, 105460 (2021)

    Article  Google Scholar 

  38. G. Chilkoor, N. Shrestha, A. Kutana, M. Tripathi, F. C. Robles Hernández, B. I. Yakobson, M. Meyyappan, A. B. Dalton, P. M. Ajayan, M. M. Rahman, and V. Gadhamshetty, Atomic layers of graphene for microbial corrosion prevention, ACS Nano 15(1), 447 (2021)

    Article  Google Scholar 

  39. C. Z. Zerger, L. K. Rodenbach, Y. T. Chen, B. Safvati, M. Z. Brubaker, S. Tran, T. A. Chen, M. Y. Li, L. J. Li, D. Goldhaber-Gordon, and H. C. Manoharan, Nanoscale electronic transparency of wafer-scale hexagonal boron nitride, Nano Lett. 22(11), 4608 (2022)

    Article  ADS  Google Scholar 

  40. R. Tao, X. Qu, Z. Wang, F. Li, L. Yang, J. Li, D. Wang, K. Zheng, and M. Dong, Tune the electronic structure of MoS2 homojunction for broadband photodetection, J. Mater. Sci. Technol. 119, 61 (2022)

    Article  Google Scholar 

  41. D. Wang, Z. Wang, Z. Yang, S. Wang, C. Tan, L. Yang, X. Hao, Z. Ke, and M. Dong, Facile damage-free double exposure for high-performance 2D semiconductor based transistors, Mater. Today Phys. 24, 100678 (2022)

    Article  Google Scholar 

  42. K. Fujisawa, B. R. Carvalho, T. Zhang, N. Perea-López, Z. Lin, V. Carozo, S. L. L. M. Ramos, E. Kahn, A. Bolotsky, H. Liu, A. L. Elías, and M. Terrones, Quantification and healing of defects in atomically thin molybdenum disulfide: Beyond the controlled creation of atomic defects, ACS Nano 15(6), 9658 (2021)

    Article  Google Scholar 

  43. C. Zhang, C. Wang, F. Yang, J. K. Huang, L. J. Li, W. Yao, W. Ji, and C. K. Shih, Engineering point-defect states in monolayer WSe2, ACS Nano 13(2), 1595 (2019)

    Google Scholar 

  44. K. Wang, L. Zhang, G. D. Nguyen, X. Sang, C. Liu, Y. Yu, W. Ko, R. R. Unocic, A. A. Puretzky, C. M. Rouleau, D. B. Geohegan, L. Fu, G. Duscher, A. P. Li, M. Yoon, and K. Xiao, Selective antisite defect formation in WS2 monolayers via reactive growth on dilute W−Au alloy substrates, Adv. Mater. 34(3), 2106674 (2022)

    Article  Google Scholar 

  45. Z. Gan, I. Paradisanos, A. Estrada-Real, J. Picker, E. Najafidehaghani, F. Davies, C. Neumann, C. Robert, P. Wiecha, K. Watanabe, T. Taniguchi, X. Marie, J. Biskupek, M. Mundszinger, R. Leiter, U. Kaiser, A. V. Krasheninnikov, B. Urbaszek, A. George, and A. Turchanin, Chemical vapor deposition of high-optical-quality large-area monolayer Janus transition metal dichalcogenides, Adv. Mater. 34(38), 2205226 (2022)

    Article  Google Scholar 

  46. T. Kang, T. W. Tang, B. Pan, H. Liu, K. Zhang, and Z. Luo, Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics, ACS Mater. Au 2(6), 665 (2022)

    Article  Google Scholar 

  47. Y. Zhang, Y. Yao, M. G. Sendeku, L. Yin, X. Zhan, F. Wang, Z. Wang, and J. He, Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures, Adv. Mater. 31(41), 1901694 (2019)

    Article  Google Scholar 

  48. Y. Wan, E. Li, Z. Yu, J. K. Huang, M. Y. Li, A. S. Chou, Y. T. Lee, C. J. Lee, H. C. Hsu, Q. Zhan, A. Aljarb, J. H. Fu, S. P. Chiu, X. Wang, J. J. Lin, Y. P. Chiu, W. H. Chang, H. Wang, Y. Shi, N. Lin, Y. Cheng, V. Tung, and L. J. Li, Low-defect-density WS2 by hydroxide vapor phase deposition, Nat. Commun. 13(1), 4149 (2022)

    Article  ADS  Google Scholar 

  49. A. Hassan, Z. Wang, Y. H. Ahn, M. Azam, A. A. Khan, U. Farooq, M. Zubair, and Y. Cao, Recent defect passivation drifts and role of additive engineering in perovskite photovoltaics, Nano Energy 101, 107579 (2022)

    Article  Google Scholar 

  50. J. Xu, G. Shao, X. Tang, F. Lv, H. Xiang, C. Jing, S. Liu, S. Dai, Y. Li, J. Luo, and Z. Zhou, Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution, Nat. Commun. 13(1), 2193 (2022)

    Article  ADS  Google Scholar 

  51. Y. Zuo, C. Liu, L. Ding, R. Qiao, J. Tian, C. Liu, Q. Wang, G. Xue, Y. You, Q. Guo, J. Wang, Y. Fu, K. Liu, X. Zhou, H. Hong, M. Wu, X. Lu, R. Yang, G. Zhang, D. Yu, E. Wang, X. Bai, F. Ding, and K. Liu, Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply, Nat. Commun. 13(1), 1007 (2022)

    Article  ADS  Google Scholar 

  52. S. Barja, S. Refaely-Abramson, B. Schuler, D. Y. Qiu, A. Pulkin, S. Wickenburg, H. Ryu, M. M. Ugeda, C. Kastl, C. Chen, C. Hwang, A. Schwartzberg, S. Aloni, S. K. Mo, D. Frank Ogletree, M. F. Crommie, O. V. Yazyev, S. G. Louie, J. B. Neaton, and A. Weber-Bargioni, Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides, Nat. Commun. 10(1), 3382 (2019)

    Article  ADS  Google Scholar 

  53. R. González-Hernández, W. López-Pérez, and J. A. Rodríguez M, Nickel adsorption and incorporation on a 2×2-T4 GaN(0001) surface: A DFT study, Appl. Surf. Sci. 266, 205 (2013)

    Article  ADS  Google Scholar 

  54. T. Tang, Z. Wang, and J. Guan, A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction, Chin. J. Catal. 43(3), 636 (2022)

    Article  Google Scholar 

  55. S. Liu, L. Zhou, W. Zhang, J. Jin, X. Mu, S. Zhang, C. Chen, and S. Mu, Stabilizing sulfur vacancy defects by performing “click” chemistry of ultrafine palladium to trigger a high-efficiency hydrogen evolution of MoS2, Nanoscale 12(18), 9943 (2020)

    Article  Google Scholar 

  56. M. Cheng, J. Yang, X. Li, H. Li, R. Du, J. Shi, and J. He, Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies, Front. Phys. 17(6), 63601 (2022)

    Article  ADS  Google Scholar 

  57. H. Bishara, S. Lee, T. Brink, M. Ghidelli, and G. Dehm, Understanding grain boundary electrical resistivity in Cu: The effect of boundary structure, ACS Nano 15(10), 16607 (2021)

    Article  Google Scholar 

  58. J. Zhang, L. Lin, K. Jia, L. Sun, H. Peng, and Z. Liu, Controlled growth of single-crystal graphene films, Adv. Mater. 32(1), 1903266 (2020)

    Article  Google Scholar 

  59. F. Bussolotti, J. Yang, H. Kawai, C. P. Y. Wong, and K. E. J. Goh, Impact of S-vacancies on the charge injection barrier at the electrical contact with the MoS2 monolayer, ACS Nano 15(2), 2686 (2021)

    Article  Google Scholar 

  60. Y. Chen, S. Huang, X. Ji, K. Adepalli, K. Yin, X. Ling, X. Wang, J. Xue, M. Dresselhaus, J. Kong, and B. Yildiz, Tuning electronic structure of single layer MoS2 through defect and interface engineering, ACS Nano 12(3), 2569 (2018)

    Article  Google Scholar 

  61. Z. Hu, Y. Zhao, W. Zou, Q. Lu, J. Liao, F. Li, M. Shang, L. Lin, and Z. Liu, Doping of graphene films: Open the way to applications in electronics and optoelectronics, Adv. Funct. Mater. 32(42), 2203179 (2022)

    Article  Google Scholar 

  62. S. Zhang, C. G. Wang, M. Y. Li, D. Huang, L. J. Li, W. Ji, and S. Wu, Defect structure of localized excitons in a WSe2 monolayer, Phys. Rev. Lett. 119(4), 046101 (2017)

    Article  ADS  Google Scholar 

  63. R. Yang, J. Fan, and M. Sun, Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties, Front. Phys. 17(4), 43202 (2022)

    Article  ADS  Google Scholar 

  64. M. Tebyetekerwa, Y. Cheng, J. Zhang, W. Li, H. Li, G. P. Neupane, B. Wang, T. N. Truong, C. Xiao, M. M. Al-Jassim, Z. Yin, Y. Lu, D. Macdonald, and H. T. Nguyen, Emission control from transition metal dichalcogenide monolayers by aggregation-induced molecular rotors, ACS Nano 14(6), 7444 (2020)

    Article  Google Scholar 

  65. J. Kim, Y. Oh, J. Shin, M. Yang, N. Shin, S. Shekhar, and S. Hong, Nanoscale mapping of carrier mobilities in the ballistic transports of carbon nanotube networks, ACS Nano 16(12), 21626 (2022)

    Article  Google Scholar 

  66. W. Wang, H. Shu, J. Wang, Y. Cheng, P. Liang, and X. Chen, Defect passivation and photoluminescence enhancement of monolayer MoS2 crystals through sodium halide-assisted chemical vapor deposition growth, ACS Appl. Mater. Interfaces 12(8), 9563 (2020)

    Article  Google Scholar 

  67. B. Huang, M. Yoon, B. G. Sumpter, S. H. Wei, and F. Liu, Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides, Phys. Rev. Lett. 115(12), 126806 (2015)

    Article  ADS  Google Scholar 

  68. M. Yarali, H. Brahmi, Z. Yan, X. Li, L. Xie, S. Chen, S. Kumar, M. Yoon, K. Xiao, and A. Mavrokefalos, Effect of metal doping and vacancies on the thermal conductivity of monolayer molybdenum diselenide, ACS Appl. Mater. Interfaces 10(5), 4921 (2018)

    Article  Google Scholar 

  69. K. Zhang, B. M. Bersch, J. Joshi, R. Addou, C. R. Cormier, C. Zhang, K. Xu, N. C. Briggs, K. Wang, S. Subramanian, K. Cho, S. Fullerton-Shirey, R. M. Wallace, P. M. Vora, and J. A. Robinson, Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping, Adv. Funct. Mater. 28(16) (2018)

  70. X. Li, A. A. Puretzky, X. Sang, S. Kc, M. Tian, F. Ceballos, M. Mahjouri-Samani, K. Wang, R. R. Unocic, H. Zhao, G. Duscher, V. R. Cooper, C. M. Rouleau, D. B. Geohegan, and K. Xiao, Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2, Adv. Funct. Mater. 27(19), 1603850 (2017)

    Article  Google Scholar 

  71. W. Chen, J. Zhao, J. Zhang, L. Gu, Z. Yang, X. Li, H. Yu, X. Zhu, R. Yang, D. Shi, X. Lin, J. Guo, X. Bai, and G. Zhang, Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2, J. Am. Chem. Soc. 137(50), 15632 (2015)

    Article  Google Scholar 

  72. Z. Wang, H. Yang, S. Zhang, J. Wang, K. Cao, Y. Lu, W. Hou, S. Guo, X. A. Zhang, and L. Wang, An approach to high-throughput growth of submillimeter transition metal dichalcogenide single crystals, Nanoscale 11(46), 22440 (2019)

    Article  Google Scholar 

  73. Z. Tu, G. Li, X. Ni, L. Meng, S. Bai, X. Chen, J. Lou, and Y. Qin, Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a doubletube technology, Appl. Phys. Lett. 109(22), 223101 (2016)

    Article  ADS  Google Scholar 

  74. J. Chen, W. Tang, B. Tian, B. Liu, X. Zhao, Y. Liu, T. Ren, W. Liu, D. Geng, H. Y. Jeong, H. S. Shin, W. Zhou, and K. P. Loh, Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates, Adv. Sci. (Weinh.) 3(8), 1500033 (2016)

    Google Scholar 

  75. H. G. Ji, Y. C. Lin, K. Nagashio, M. Maruyama, P. Solís-Fernández, A. Sukma Aji, V. Panchal, S. Okada, K. Suenaga, and H. Ago, Hydrogen-assisted epitaxial growth of monolayer tungsten disulfide and seamless grain stitching, Chem. Mater. 30(2), 403 (2018)

    Article  Google Scholar 

  76. Y. Gong, G. Ye, S. Lei, G. Shi, Y. He, J. Lin, X. Zhang, R. Vajtai, S. T. Pantelides, W. Zhou, B. Li, and P. M. Ajayan, Synthesis of millimeter-scale transition metal dichalcogenides single crystals, Adv. Funct. Mater. 26(12), 2009 (2016)

    Article  Google Scholar 

  77. Z. Lin, Y. Zhao, C. Zhou, R. Zhong, X. Wang, Y. H. Tsang, and Y. Chai, Controllable growth of large-size crystalline mos2 and resist-free transfer assisted with a Cu thin film, Sci. Rep. 5(1), 18596 (2015)

    Article  ADS  Google Scholar 

  78. S. Wang, M. Pacios, H. Bhaskaran, and J. H. Warner, Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition, Nanotechnology 27(8), 085604 (2016)

    Article  ADS  Google Scholar 

  79. P. Yang, X. Zou, Z. Zhang, M. Hong, J. Shi, S. Chen, J. Shu, L. Zhao, S. Jiang, X. Zhou, Y. Huan, C. Xie, P. Gao, Q. Chen, Q. Zhang, Z. Liu, and Y. Zhang, Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass, Nat. Commun. 9(1), 979 (2018)

    Article  ADS  Google Scholar 

  80. M. E. Pam, Y. Shi, J. Hu, X. Zhao, J. Dan, X. Gong, S. Huang, D. Geng, S. Pennycook, L. K. Ang, and H. Y. Yang, Effects of precursor pre-treatment on the vapor deposition of WS2 monolayers, Nanoscale Adv. 1(3), 953 (2019)

    Article  ADS  Google Scholar 

  81. Z. Zhang, X. Xu, J. Song, Q. Gao, S. Li, Q. Hu, X. Li, and Y. Wu, High-performance transistors based on monolayer CVD MoS2 grown on molten glass, Appl. Phys. Lett. 113(20), 202103 (2018)

    Article  ADS  Google Scholar 

  82. J. Chen, X. Zhao, S. J. R. Tan, H. Xu, B. Wu, B. Liu, D. Fu, W. Fu, D. Geng, Y. Liu, W. Liu, W. Tang, L. Li, W. Zhou, T. C. Sum, and K. P. Loh, Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass, J. Am. Chem. Soc. 139(3), 1073 (2017)

    Article  Google Scholar 

  83. P. Yang, S. Zhang, S. Pan, B. Tang, Y. Liang, X. Zhao, Z. Zhang, J. Shi, Y. Huan, Y. Shi, S. J. Pennycook, Z. Ren, G. Zhang, Q. Chen, X. Zou, Z. Liu, and Y. Zhang, Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111), ACS Nano 14(4), 5036 (2020)

    Article  Google Scholar 

  84. J. Shi, X. Zhang, D. Ma, J. Zhu, Y. Zhang, Z. Guo, Y. Yao, Q. Ji, X. Song, Y. Zhang, C. Li, Z. Liu, W. Zhu, and Y. Zhang, Substrate facet effect on the growth of monolayer MoS2 on Au foils, ACS Nano 9(4), 4017 (2015)

    Article  Google Scholar 

  85. S. J. Yun, S. H. Chae, H. Kim, J. C. Park, J. H. Park, G. H. Han, J. S. Lee, S. M. Kim, H. M. Oh, J. Seok, M. S. Jeong, K. K. Kim, and Y. H. Lee, Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils, ACS Nano 9(5), 5510 (2015)

    Article  Google Scholar 

  86. Y. Gao, Z. Liu, D. M. Sun, L. Huang, L. P. Ma, L. C. Yin, T. Ma, Z. Zhang, X. L. Ma, L. M. Peng, H. M. Cheng, and W. Ren, Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils, Nat. Commun. 6(1), 8569 (2015)

    Article  ADS  Google Scholar 

  87. K. Godin, K. Kang, S. Fu, and E. H. Yang, Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates, J. Phys. D Appl. Phys. 49(32), 325304 (2016)

    Article  ADS  Google Scholar 

  88. F. Lan, R. Yang, S. Hao, B. Zhou, K. Sun, H. Cheng, S. Zhang, L. Li, and L. Jin, Controllable synthesis of millimeter-size single crystal WS2, Appl. Surf. Sci. 504, 144378 (2020)

    Article  Google Scholar 

  89. G. Li, X. Wang, B. Han, W. Zhang, S. Qi, Y. Zhang, J. Qiu, P. Gao, S. Guo, R. Long, Z. Tan, X. Z. Song, and N. Liu, Direct growth of continuous and uniform MoS2 film on SiO2/Si substrate catalyzed by sodium sulfate, J. Phys. Chem. Lett. 11(4), 1570 (2020)

    Article  Google Scholar 

  90. H. Kim, G. H. Han, S. J. Yun, J. Zhao, D. H. Keum, H. Y. Jeong, T. H. Ly, Y. Jin, J. H. Park, B. H. Moon, S. W. Kim, and Y. H. Lee, Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides, Nanotechnology 28(36), 36LT01 (2017)

    Article  Google Scholar 

  91. J. G. Song, G. Hee Ryu, Y. Kim, W. Je Woo, K. Yong Ko, Y. Kim, C. Lee, I. K. Oh, J. Park, Z. Lee, and H. Kim, Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride, Nanotechnology 28(46), 465103 (2017)

    Article  Google Scholar 

  92. H. Kim, D. Ovchinnikov, D. Deiana, D. Unuchek, and A. Kis, Suppressing nucleation in metal–organic chemical vapor deposition of MoS2 monolayers by alkali metal halides, Nano Lett. 17(8), 5056 (2017)

    Article  ADS  Google Scholar 

  93. Y. Shi, P. Yang, S. Jiang, Z. Zhang, Y. Huan, C. Xie, M. Hong, J. Shi, and Y. Zhang, Na-assisted fast growth of large single-crystal MoS2 on sapphire, Nanotechnology 30(3), 034002 (2019)

    Article  ADS  Google Scholar 

  94. B. J. Modtland, E. Navarro-Moratalla, X. Ji, M. Baldo, and J. Kong, Monolayer tungsten disulfide (WS2) via chlorine-driven chemical vapor transport, Small 13(33), 1701232 (2017)

    Article  Google Scholar 

  95. P. Yang, A. G. Yang, L. Chen, J. Chen, Y. Zhang, H. Wang, L. Hu, R. J. Zhang, R. Liu, X. P. Qu, Z. J. Qiu, and C. Cong, Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide, Nano Res. 12(4), 823 (2019)

    Article  Google Scholar 

  96. X. Ling, Y. H. Lee, Y. Lin, W. Fang, L. Yu, M. S. Dresselhaus, and J. Kong, Role of the seeding promoter in MoS2 growth by chemical vapor deposition, Nano Lett. 14(2), 464 (2014)

    Article  ADS  Google Scholar 

  97. Y. F. Lim, K. Priyadarshi, F. Bussolotti, P. K. Gogoi, X. Cui, M. Yang, J. Pan, S. W. Tong, S. Wang, S. J. Pennycook, K. E. J. Goh, A. T. S. Wee, S. L. Wong, and D. Chi, Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier, ACS Nano 12(2), 1339 (2018)

    Article  Google Scholar 

  98. J. Zhu, H. Xu, G. Zou, W. Zhang, R. Chai, J. Choi, J. Wu, H. Liu, G. Shen, and H. Fan, MoS2−OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates, J. Am. Chem. Soc. 141(13), 5392 (2019)

    Article  Google Scholar 

  99. G. U. Özküçük, C. Odacı, E. Şahin, F. Ay, and N. K. Perkgöz, Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate, Mater. Sci. Semicond. Process. 105, 104679 (2020)

    Article  Google Scholar 

  100. J. Jiang, Q. Zhang, A. Wang, Y. Zhang, F. Meng, C. Zhang, X. Feng, Y. Feng, L. Gu, H. Liu, and L. Han, A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment, Small 15(36), 1901791 (2019)

    Article  Google Scholar 

  101. H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, J. Wang, and Z. Ni, Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding, ACS Nano 8(6), 5738 (2014)

    Article  Google Scholar 

  102. D. Pierucci, H. Henck, Z. Ben Aziza, C. H. Naylor, A. Balan, J. E. Rault, M. G. Silly, Y. J. Dappe, F. Bertran, P. Le Fevre, F. Sirotti, A. T. Johnson, and A. Ouerghi, Tunable doping in hydrogenated single layered molybdenum disulfide, ACS Nano 11(2), 1755 (2017)

    Article  Google Scholar 

  103. Y. Zhu, H. Yi, Q. Hao, J. Liu, Y. Ke, Z. Wang, D. Fan, and W. Zhang, Scalable synthesis and defect modulation of large monolayer WS2 via annealing in H2S atmosphere/thiol treatment to enhance photoluminescence, Appl. Surf. Sci. 485, 101 (2019)

    Article  ADS  Google Scholar 

  104. S. Hu, J. Li, S. Wang, Y. Liang, H. Kang, Y. Zhang, Z. Chen, Y. Sui, G. Yu, S. Peng, Z. Jin, and X. Liu, Detecting the repair of sulfur vacancies in CVD-grown MoS2 domains via hydrogen etching, J. Electron. Mater. 49(4), 2547 (2020)

    Article  ADS  Google Scholar 

  105. M. Liu, J. Shi, Y. Li, X. Zhou, D. Ma, Y. Qi, Y. Zhang, and Z. Liu, Temperature-triggered sulfur vacancy evolution in monolayer MoS2/graphene heterostructures, Small 13(40), 1602967 (2017)

    Article  Google Scholar 

  106. S. V. Sivaram, A. T. Hanbicki, M. R. Rosenberger, G. G. Jernigan, H. J. Chuang, K. M. McCreary, and B. T. Jonker, Spatially selective enhancement of photoluminescence in MoS2 by exciton-mediated adsorption and defect passivation, ACS Appl. Mater. Interfaces 11(17), 16147 (2019)

    Article  Google Scholar 

  107. A. Bera, D. V. S. Muthu, and A. K. Sood, Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects, J. Raman Spectrosc. 49(1), 100 (2018)

    Article  ADS  Google Scholar 

  108. A. Venkatakrishnan, H. Chua, P. Tan, Z. Hu, H. Liu, Y. Liu, A. Carvalho, J. Lu, and C. H. Sow, Microsteganography on WS2 monolayers tailored by direct laser painting, ACS Nano 11(1), 713 (2017)

    Article  Google Scholar 

  109. D. Kiriya, Y. Hijikata, J. Pirillo, R. Kitaura, A. Murai, A. Ashida, T. Yoshimura, and N. Fujimura, Systematic study of photoluminescence enhancement in monolayer molybdenum disulfide by acid treatment, Langmuir 34(35), 10243 (2018)

    Article  Google Scholar 

  110. X. Dai, X. Zhang, I. M. Kislyakov, L. Wang, J. Huang, S. Zhang, N. Dong, and J. Wang, Enhanced two-photon absorption and two-photon luminescence in monolayer MoS2 and WS2 by defect repairing, Opt. Express 27(10), 13744 (2019)

    Article  ADS  Google Scholar 

  111. S. Roy, W. Choi, S. Jeon, D. H. Kim, H. Kim, S. J. Yun, Y. Lee, J. Lee, Y. M. Kim, and J. Kim, Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms, Nano Lett. 18(7), 4523 (2018)

    Article  ADS  Google Scholar 

  112. K. P. Dhakal, S. Roy, S. J. Yun, G. Ghimire, C. Seo, and J. Kim, Heterogeneous modulation of exciton emission in triangular WS2 monolayers by chemical treatment, J. Mater. Chem. C Mater. Opt. Electron. Devices 5(27), 6820 (2017)

    Article  Google Scholar 

  113. Y. Kim, Y. Lee, H. Kim, S. Roy, and J. Kim, Near-field exciton imaging of chemically treated MoS2 monolayers, Nanoscale 10(18), 8851 (2018)

    Article  Google Scholar 

  114. M. Amani, D. H. Lien, D. Kiriya, J. Xiao, A. Azcatl, J. Noh, S. R. Madhvapathy, R. Addou, S. Kc, M. Dubey, K. Cho, R. M. Wallace, S. C. Lee, J. H. He, J. W. Ager, X. Zhang, E. Yablonovitch, and A. Javey, Near-unity photoluminescence quantum yield in MoS2, Science 350(6264), 1065 (2015)

    Article  ADS  Google Scholar 

  115. H. Kim, D. H. Lien, M. Amani, J. W. Ager, and A. Javey, Highly stable near-unity photoluminescence yield in monolayer MoS2 by fluoropolymer encapsulation and superacid treatment, ACS Nano 11(5), 5179 (2017)

    Article  Google Scholar 

  116. A. Alharbi, P. Zahl, and D. Shahrjerdi, Material and device properties of superacid-treated monolayer molybdenum disulfide, Appl. Phys. Lett. 110(3), 033503 (2017)

    Article  ADS  Google Scholar 

  117. P. Lin, L. Zhu, D. Li, and Z. L. Wang, Defect repair for enhanced piezo-phototronic MoS2 flexible photo-transistors, J. Mater. Chem. C Mater. Opt. Electron. Devices 7(46), 14731 (2019)

    Article  Google Scholar 

  118. X. Zhang, Q. Liao, S. Liu, Z. Kang, Z. Zhang, J. Du, F. Li, S. Zhang, J. Xiao, B. Liu, Y. Ou, X. Liu, L. Gu, and Y. Zhang, Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode, Nat. Commun. 8(1), 15881 (2017)

    Article  ADS  Google Scholar 

  119. X. Zhang, Q. Liao, Z. Kang, B. Liu, Y. Ou, J. Du, J. Xiao, L. Gao, H. Shan, Y. Luo, Z. Fang, P. Wang, Z. Sun, Z. Zhang, and Y. Zhang, Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes, ACS Nano 13(3), 3280 (2019)

    Article  Google Scholar 

  120. Z. Yu, Y. Pan, Y. Shen, Z. Wang, Z. Y. Ong, T. Xu, R. Xin, L. Pan, B. Wang, L. Sun, J. Wang, G. Zhang, Y. W. Zhang, Y. Shi, and X. Wang, Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering, Nat. Commun. 5(1), 5290 (2014)

    Article  ADS  Google Scholar 

  121. L. Zhou, S. Yan, L. Pan, X. Wang, Y. Wang, and Y. Shi, A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries, Nano Res. 9(3), 857 (2016)

    Article  Google Scholar 

  122. S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, and P. Samori, Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols, Adv. Mater. 29(18), 1606760 (2017)

    Article  Google Scholar 

  123. M. Makarova, Y. Okawa, and M. Aono, Selective adsorption of thiol molecules at sulfur vacancies on MoS2(0001), followed by vacancy repair via S−C dissociation, J. Phys. Chem. C 116(42), 22411 (2012)

    Article  Google Scholar 

  124. M. El Garah, S. Bertolazzi, S. Ippolito, M. Eredia, I. Janica, G. Melinte, O. Ersen, G. Marletta, A. Ciesielski, and P. Samori, MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions, FlatChem 9, 33 (2018)

    Article  Google Scholar 

  125. K. Cho, M. Min, T. Y. Kim, H. Jeong, J. Pak, J. K. Kim, J. Jang, S. J. Yun, Y. H. Lee, W. K. Hong, and T. Lee, Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules, ACS Nano 9(8), 8044 (2015)

    Article  Google Scholar 

  126. Q. Ding, K. J. Czech, Y. Zhao, J. Zhai, R. J. Hamers, J. C. Wright, and S. Jin, Basal-plane ligand functionalization on semiconducting 2H-MoS2 monolayers, ACS Appl. Mater. Interfaces 9(14), 12734 (2017)

    Article  Google Scholar 

  127. D. M. Sim, M. Kim, S. Yim, M. J. Choi, J. Choi, S. Yoo, and Y. S. Jung, Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption, ACS Nano 9(12), 12115 (2015)

    Article  Google Scholar 

  128. S. Wei, C. Ge, L. Zhou, S. Zhang, M. Dai, F. Gao, Y. Sun, Y. Qiu, Z. Wang, J. Zhang, and P. Hu, Performance improvement of multilayered SnS2 field effect transistors through synergistic effect of vacancy repairing and electron doping introduced by EDTA, ACS Appl. Electron. Mater. 1(11), 2380 (2019)

    Article  Google Scholar 

  129. J. H. Park, A. Sanne, Y. Guo, M. Amani, K. Zhang, H. C. P. Movva, J. A. Robinson, A. Javey, J. Robertson, S. K. Banerjee, and A. C. Kummel, Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface, Sci. Adv. 3(10), e1701661 (2017)

    Article  ADS  Google Scholar 

  130. W. Ding, X. Li, F. Jiang, P. Liu, P. Liu, S. Zhu, G. Zhang, C. Liu, and J. Xu, Defect modification engineering on a laminar MoS2 film for optimizing thermoelectric properties, J. Mater. Chem. C 8(6), 1909 (2020)

    Article  Google Scholar 

  131. A. O. A. Tanoh, J. Alexander-Webber, J. Xiao, G. Delport, C. A. Williams, H. Bretscher, N. Gauriot, J. Allardice, R. Pandya, Y. Fan, Z. Li, S. Vignolini, S. D. Stranks, S. Hofmann, and A. Rao, Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands, Nano Lett. 19(9), 6299 (2019)

    Article  ADS  Google Scholar 

  132. D. H. Luong, H. S. Lee, G. Ghimire, J. Lee, H. Kim, S. J. Yun, G. H. An, and Y. H. Lee, Enhanced light–matter interactions in self-assembled plasmonic nanoparticles on 2D semiconductors, Small 14(47), 1802949 (2018)

    Article  Google Scholar 

  133. T. L. Atallah, J. Wang, M. Bosch, D. Seo, R. A. Burke, O. Moneer, J. Zhu, M. Theibault, L. E. Brus, J. Hone, and X. Y. Zhu, Electrostatic screening of charged defects in monolayer MoS2, J. Phys. Chem. Lett. 8(10), 2148 (2017)

    Article  Google Scholar 

  134. J. Jiang, C. Ling, T. Xu, W. Wang, X. Niu, A. Zafar, Z. Yan, X. Wang, Y. You, L. Sun, J. Lu, J. Wang, and Z. Ni, Defect engineering for modulating the trap states in 2D photoconductors, Adv. Mater. 30(40), e1804332 (2018)

    Article  Google Scholar 

  135. X. Xu, Z. Chen, B. Sun, Y. Zhao, L. Tao, and J. B. Xu, Efficient passivation of monolayer MoS2 by epitaxially grown 2D organic crystals, Sci. Bull. (Beijing) 64(22), 1700 (2019)

    Article  ADS  Google Scholar 

  136. S. Mouri, Y. Miyauchi, and K. Matsuda, Tunable photoluminescence of monolayer MoS2 via chemical doping, Nano Lett. 13(12), 5944 (2013)

    Article  ADS  Google Scholar 

  137. L. Yang, K. Majumdar, H. Liu, Y. Du, H. Wu, M. Hatzistergos, P. Y. Hung, R. Tieckelmann, W. Tsai, C. Hobbs, and P. D. Ye, Chloride molecular doping technique on 2D materials: WS2 and MoS2, Nano Lett. 14(11), 6275 (2014)

    Article  ADS  Google Scholar 

  138. J. Lu, A. Carvalho, X. K. Chan, H. Liu, B. Liu, E. S. Tok, K. P. Loh, A. H. Castro Neto, and C. H. Sow, Atomic healing of defects in transition metal dichalcogenides, Nano Lett. 15(5), 3524 (2015)

    Article  ADS  Google Scholar 

  139. L. Wang, M. Schmid, Z. N. Nilsson, M. Tahir, H. Chen, and J. B. Sambur, Laser annealing improves the photoelectrochemical activity of ultrathin MoSe2 photoelectrodes, ACS Appl. Mater. Interfaces 11(21), 19207 (2019)

    Article  Google Scholar 

  140. H. V. Han, A. Y. Lu, L. S. Lu, J. K. Huang, H. Li, C. L. Hsu, Y. C. Lin, M. H. Chiu, K. Suenaga, C. W. Chu, H. C. Kuo, W. H. Chang, L. J. Li, and Y. Shi, Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment, ACS Nano 10(1), 1454 (2016)

    Article  Google Scholar 

  141. Y. Meng, C. Ling, R. Xin, P. Wang, Y. Song, H. Bu, S. Gao, X. Wang, F. Song, J. Wang, X. Wang, B. Wang, and G. Wang, Repairing atomic vacancies in single-layer MoSe2 field-effect transistor and its defect dynamics, npj Quant. Mater. 2(1), 16 (2017)

    Article  ADS  Google Scholar 

  142. H. Ahn, Y. C. Huang, C. W. Lin, Y. L. Chiu, E. C. Lin, Y. Y. Lai, and Y. H. Lee, Efficient defect healing of transition metal dichalcogenides by metallophthalocyanine, ACS Appl. Mater. Interfaces 10(34), 29145 (2018)

    Article  Google Scholar 

  143. Y. Li, M. Yang, Y. Lu, D. Cao, X. Chen, and H. Shu, Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures, Front. Phys. 18(3), 33307 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52002254 and 52272160), the Sichuan Science and Technology Foundation (Nos. 2020YJ0262, 2021YFH0127, 2023YFSY0002, and 2022YFS0045), the Chunhui Plan of the Ministry of Education, Fundamental Research Funds for the Central Universities, China (No. YJ201893), and the Open-Foundation of Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited (Grant No. KLLDT202104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zegao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, S., Li, F., Tan, C. et al. Defect repairing in two-dimensional transition metal dichalcogenides. Front. Phys. 18, 53604 (2023). https://doi.org/10.1007/s11467-023-1290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-023-1290-6

Keywords

Navigation