Skip to main content
Log in

Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Van der Waals semiconductor heterostructures (VSHs) composed of two or more two-dimensional (2D) materials with different band gaps exhibit huge potential for exploiting high-performance multifunctional devices. The application of 2D VSHs in atomically thin devices highly depends on the control of their carrier type and density. Herein, on the basis of comprehensive first-principles calculations, we report a new strategy to manipulate the doping polarity and carrier density in a class of 2D VSHs consisting of atomically thin transition metal dichalcogenides (TMDs) and α-In2X3 (X = S, Se) ferroelectrics via switchable polarization field. Our calculated results indicate that the band bending of In2X3 layer driven by the FE polarization can be utilized for engineering the band alignment and doping polarity of TMD/In2X3 VSHs, which enables us to control their carrier density and type of the VSHs by the orientation and magnitude of local FE polarization field. Inspired by these findings, we demonstrate that doping-free p—n junctions achieved in MoTe2/In2Se3 VSHs exhibit high carrier density (\({10^{{1_3}}} - {10^{{1_4}}}\,{\rm{c}}{{\rm{m}}^{ - 2}}\)), and the inversion of the VHSs from n—p junctions to p—i—n junctions has been realized by the polarization switching from upward to downward states. This work provides a nonvolatile and nondestructive doping strategy for obtaining programmable p—n van der Waals (vdW) junctions and opens the possibilities for self-powered and multifunctional device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures, Science 327(5961), 60 (2010)

    Article  ADS  Google Scholar 

  2. J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Generic new platform for topological quantum computation using semiconductor heterostructures, Phys. Rev. Lett. 104(4), 040502 (2010)

    Article  ADS  Google Scholar 

  3. C. Siegert, A. Ghosh, M. Pepper, I. Farrer, and D. A. Ritchie, The possibility of an intrinsic spin lattice in high-mobility semiconductor heterostructures, Nat. Phys. 3(5), 315 (2007)

    Article  Google Scholar 

  4. J. Narayan and S. Oktyabrsky, Formation of misfit dislocations in thin film heterostructures, J. Appl. Phys. 92(12), 7122 (2002)

    Article  ADS  Google Scholar 

  5. X. Liu, D. Cao, Y. Yao, P. Tang, M. Zhang, X. Chen, and H. Shu, Heteroepitaxial growth and interface band alignment in a large-mismatch CsPbI3/GaN heterojunction, J. Mater. Chem. C 10(6), 1984 (2022)

    Article  Google Scholar 

  6. R. Yang, J. Fan, and M. Sun, Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties, Front. Phys. 17(4), 43202 (2022)

    Article  ADS  Google Scholar 

  7. K. Mak and J. Shan, Photonics and Optoelectronics of 2D semiconductor transition metal dichalcogenides, Nat. Photonics 10(4), 216 (2016)

    Article  ADS  Google Scholar 

  8. H. Liu, Y. Du, Y. Deng, and P. D. Ye, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chem. Soc. Rev. 44(9), 2732 (2015)

    Article  Google Scholar 

  9. S. Zhang, S. Guo, Z. Chen, Y. Wang, H. Gao, J. Gómez-Herrero, P. Ares, F. Zamora, Z. Zhu, and H. Zeng, Recent progress in 2D group-VA semiconductors: from theory to experiment, Chem. Soc. Rev. 47(3), 982 (2018)

    Article  Google Scholar 

  10. Y. Liu, N. O. Weiss, X. Duan, H. C. Cheng, Y. Huang, and X. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater. 1(9), 16042 (2016)

    Article  ADS  Google Scholar 

  11. Y. Y. Wang, F. P. Li, W. Wei, B. B. Huang, and Y. Dai, Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides, Front. Phys. 16(1), 13501 (2021)

    Article  ADS  Google Scholar 

  12. L. Zhang, Z. Zhang, F. Wu, D. Wang, R. Gogna, S. Hou, K. Watanabe, K. Taniguchi, K. Kulkarni, T. Kuo, S. R. Forrest, and H. Deng, Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers, Nat. Commun. 11(1), 5888 (2020)

    Article  ADS  Google Scholar 

  13. M. R. Rosenberger, H. J. Chuang, M. Phillips, V. P. Oleshko, K. M. McCreary, S. V. Sivaram, C. S. Hellberg, and B. T. Jonker, Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures, ACS Nano 14(4), 4550 (2020)

    Article  Google Scholar 

  14. H. Chen, X. Wen, J. Zhang, T. Wu, Y. Gong, X. Zhang, J. Yuan, C. Yi, J. Lou, P. M. Ajayan, W. Zhuang, G. Zhang, and J. Zheng, Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures, Nat. Commun. 7(1), 12512 (2016)

    Article  ADS  Google Scholar 

  15. A. F. Rigosi, H. M. Hill, Y. Li, A. Chernikov, and T. F. Heinz, Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2, Nano Lett. 15(8), 5033 (2015)

    Article  ADS  Google Scholar 

  16. J. Guo, L. Wang, Y. Yu, P. Wang, Y. Huang, and X. Duan, SnSe/MoS2 van der Waals heterostructure junction field-effect transistors with nearly ideal subthreshold slope, Adv. Mater. 31(49), 1902962 (2019)

    Article  Google Scholar 

  17. Y. Cheng, P. Tang, P. Liang, X. Liu, D. Cao, X. Chen, and H. Shu, Sulfur-driven transition from vertical to lateral growth of 2D SnS—SnS2 heterostructures and their band alignments, J. Phys. Chem. C 124(50), 27820 (2020)

    Article  Google Scholar 

  18. J. Xu, J. Jia, S. Lai, J. Ju, and S. Lee, Tunneling field effect transistor integrated with black phosphorus-MoS2 junction and ion gel dielectric, Appl. Phys. Lett. 110(3), 033103 (2017)

    Article  ADS  Google Scholar 

  19. S. J. Liang, B. Cheng, X. Cui, and F. Miao, Van der Waals heterostructures for high-performance device applications: Challenges and opportunities, Adv. Mater. 32, 1903800 (2020)

    Article  Google Scholar 

  20. R. Cheng, F. Wang, L. Yin, Z. Wang, Y. Wen, T. A. Shifa, and J. He, High-performance, multifunctional devices based on asymmetric van der Waals heterostructures, Nat. Electron. 1(6), 356 (2018)

    Article  Google Scholar 

  21. H. P. Komsa, J. Kotakoski, S. Kurasch, O. Lehtinen, U. Kaiser, and A. V. Krasheninnikov, Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping, Phys. Rev. Lett. 109(3), 035503 (2012)

    Article  ADS  Google Scholar 

  22. Q. Zhang, H. Ying, X. Li, R. Xiang, Y. Zheng, H. Wang, J. Su, M. Xu, X. Zheng, S. Maruyama, and X. Zhang, Controlled doping engineering in 2D MoS2 crystals toward performance augmentation of optoelectronic devices, ACS Appl. Mater. Interfaces 13(27), 31861 (2021)

    Article  Google Scholar 

  23. Y. Gong, H. Yuan, C. L. Wu, P. Tang, S. Z. Yang, A. Yang, G. Li, B. Liu, J. van de Groep, M. L. Brongersma, M. F. Chisholm, S. C. Zhang, W. Zhou, and Y. Cui, Spatial controlled doping of two-dimensional SnS2 through intercalation for electronics, Nat. Nanotechnol. 13(4), 294 (2018)

    Article  ADS  Google Scholar 

  24. D. Kiriya, M. Tosun, P. Zhao, J. S. Kang, and A. Javey, Air-stable surface charge transfer doping of MoS2 by benzyl viologen, J. Am. Chem. Soc. 136(22), 7853 (2014)

    Article  Google Scholar 

  25. W. Shi, S. Kahn, L. Jiang, S. Y. Wang, H. Z. Tsai, D. Wong, T. Taniguchi, K. Watanabe, F. Wang, M. F. Crommie, and A. Zettl, Reversible writing of high mobility and high-carrier density doping patterns in two-dimensional van der Waals heterostructures, Nat. Electron. 3(2), 99 (2020)

    Article  Google Scholar 

  26. R. Zhang, Z. Xie, C. An, S. Fan, Q. Zhang, S. Wu, L. Xu, X. Hu, D. Zhang, D. Sun, J. Chen, and J. Liu, Ultraviolet light-induced persistent and degenerated doping in MoS2 for potential photocontrollable electronics applications, ACS Appl. Mater. Interfaces 10(33), 27840 (2018)

    Article  Google Scholar 

  27. M. Buscema, D. J. Groenendijk, G. A. Steele, H. S. J. van der Zant, and A. Castellanos-Gomez, Photovoltaic effect in few-layer phosphorus PN junctions defined local electrostatic gating, Nat. Commun. 5(1), 4651 (2014)

    Article  ADS  Google Scholar 

  28. P. Agnihotri, P. Dhakras, and J. U. Lee, Bipolar junction transistors in two-dimensional WSe2 with large current and photocurrent grains, Nano Lett. 16(7), 4355 (2016)

    Article  ADS  Google Scholar 

  29. S. J. Lee, Z. Lin, X. Duan, and Y. Huang, Doping on demand in 2D devices, Nat. Electron. 3(2), 77 (2020)

    Article  Google Scholar 

  30. L. Kong, X. Zhang, Q. Tao, M. Zhang, W. Dang, Z. Li, L. Feng, L. Liao, X. Duan, and Y. Liu, Doping-free complementary WSe2 circuit via van der Waals metal integration, Nat. Commun. 11(1), 1866 (2020)

    Article  ADS  Google Scholar 

  31. D. Wijethunge, L. Zhang, C. Tang, and A. Du, Tunning band alignment and optical properites of 2D van der Waals heterostructure via ferroelectric polarization switching, Front. Phys. 15(6), 63504 (2020)

    Article  ADS  Google Scholar 

  32. J. W. Chen, S. T. Lo, S. C. Ho, S. S. Wong, T. H. Y. Vu, X. Q. Zhang, Y. D. Liu, Y. Y. Chiou, Y. X. Chen, J. C. Yang, Y. C. Chen, Y. H. Chu, Y. H. Lee, C. J. Chung, T. M. Chen, C. H. Chen, and C. L. Wu, A gate-free monolayer WSe2 PN diode, Nat. Commun. 9(1), 3143 (2018)

    Article  ADS  Google Scholar 

  33. Z. Lu, C. Serrao, A. I. Khan, L. You, J. C. Wong, Y. Ye, H. Zhu, X. Zhang, and S. Salahuddin, Nonvolatile MoS2 field effect transistors directly gated by single crystalline epitaxial ferroelectric, Appl. Phys. Lett. 111(2), 023104 (2017)

    Article  ADS  Google Scholar 

  34. A. Nguyen, P. Sharma, T. Scott, E. Preciado, V. Klee, D. Sun, I. H. D. Lu, D. Barroso, S. H. Kim, V. Y. Shur, A. R. Akhmatkhanov, A. Gruverman, L. Bartels, and P. A. Dowben, Toward ferroelectric control of monolayer MoS2, Nano Lett. 15(5), 3364 (2015)

    Article  ADS  Google Scholar 

  35. X. Liu, X. Zhou, Y. Pan, J. Yang, H. Xiang, Y. Yuan, S. Liu, H. Luo, D. Zhang, and J. Sun, Charge—ferroelectric transition in ultrathin Na0.5Bi4.5Ti4O15 flakes probed via a dual-gated full van der Waals transistor, Adv. Mater. 32(49), 2004813 (2020)

    Article  Google Scholar 

  36. G. Wu, X. Wang, Y. Chen, S. Wu, B. Wu, Y. Jiang, S. Shen, T. Lin, Q. Liu, X. Wang, P. Zhou, S. Zhang, W. Hu, X. Meng, J. Chu, and J. Wang, MoTe2 p—n homojunctions defined by ferroelectric polarization, Adv. Mater. 32(16), 1907937 (2020)

    Article  Google Scholar 

  37. G. Wu, B. Tian, L. Liu, W. Lv, S. Wu, X. Wang, Y. Chen, J. Li, Z. Wang, S. Wu, H. Shen, T. Lin, P. Zhou, Q. Liu, C. Duan, S. Zhang, X. Meng, S. Wu, W. Hu, X. Wang, J. Chu, and J. Wang, Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains, Nat. Electron. 3(1), 43 (2020)

    Article  Google Scholar 

  38. N. A. Spaldin, Fundamental size limits in ferroelectricity, Science 304(5677), 1606 (2004)

    Article  Google Scholar 

  39. M. Dawber, K. M. Rabe, and J. F. Scott, Physics of thin-film ferroelectric oxides, Rev. Mod. Phys. 77(4), 1083 (2005)

    Article  ADS  Google Scholar 

  40. A. Belianinov, Q. He, A. Dziaugys, P. Maksymovych, E. Eliseev, A. Borisevich, A. Morozovska, J. Banys, Y. Vysochanskii, and S. V. Kalinin, CuInP2S6 room temperature layered ferroelectric, Nano Lett. 15(6), 3808 (2015)

    Article  ADS  Google Scholar 

  41. W. Ding, J. Zhu, J. Wang, Y. Gao, D. Xiao, Y. Gu, Z. Zhang, and W. Zhu, Prediction of intrinsic two-dimensional frroelectrics in In2Se3 and other III2–VI3 van der Waals materials, Nat. Commun. 8(1), 14956 (2017)

    Article  ADS  Google Scholar 

  42. N. Higashitarumizu, H. Kawamoto, C. J. Lee, B. H. Lin, F. H. Chu, I. Yonemori, T. Nishimura, K. Wakabayashi, W. Chang, and K. Nagashio, Purely in-plane ferroelectricity in monolayer SnS at room temperature, Nat. Commun. 11(1), 2428 (2020)

    Article  ADS  Google Scholar 

  43. S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, and J. Hao, Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit, Nat. Commun. 10(1), 1775 (2019)

    Article  ADS  Google Scholar 

  44. F. Xue, W. Hu, K. C. Lee, L. S. Lu, J. Zhang, H. L. Tang, A. Han, W. T. Hsu, S. Tu, W. H. Chang, C. H. Lien, J. H. He, Z. Zhang, L. J. Li, and X. Zhang, Room-temperature ferroelectricity in hexagonally layered α-In2Se3 nanoflakes down to the monolayer limit, Adv. Funct. Mater. 28(50), 1803738 (2018)

    Article  Google Scholar 

  45. J. Quereda, R. Biele, G. Rubio-Bollinger, N. Agrait, R. D’Agosta, and A. Castellanos-Gomez, Strong quantum confinement effect in the optical properties of ultrathinα-In2Se3, Adv. Opt. Mater. 4(12), 1939 (2016)

    Article  Google Scholar 

  46. M. Yang, H. Shu, Y. Li, D. Cao, and X. Chen, Polarization-induced band alignment transition and nonvolatile p—n junctions in 2D van der Waals heterostructures, Adv. Electron. Mater. 8(3), 2101022 (2022)

    Article  Google Scholar 

  47. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  48. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64(4), 1045 (1992)

    Article  ADS  Google Scholar 

  49. S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27(15), 1787 (2006)

    Article  Google Scholar 

  50. J. Heyd, G. E. Scuseria, and M. Ernzerhof, Hybrid functionals based on a screened coulomb potential, J. Chem. Phys. 118(18), 8207 (2003)

    Article  ADS  Google Scholar 

  51. R. D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids, Phys. Rev. B 47(3), 1651 (1993)

    Article  ADS  Google Scholar 

  52. R. F. Bader, A quantum theory of molecular structure and its applications, Chem. Rev. 91(5), 893 (1991)

    Article  Google Scholar 

  53. W. F. Io, S. Yuan, S. Y. Pang, L. W. Wong, J. Zhao, and J. Hao, Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers, Nano Res. 13(7), 1897 (2020)

    Article  Google Scholar 

  54. R. Peng, Y. Ma, S. Zhang, B. Huang, L. Kou, and Y. Dai, Self-doped p—n junctions in two-dimensional In2X3 van der Waals materials, Mater. Horiz. 7(2), 504 (2020)

    Article  Google Scholar 

  55. T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, Van der Waals bonding in layered compounds from advanced density-functional first-principles calculations, Phys. Rev. Lett. 108(23), 235502 (2012)

    Article  ADS  Google Scholar 

  56. M. Yang, H. Shu, P. Tang, P. Liang, D. Cao, and X. Chen, Intrinsic polarization-induced enhanced ferromagnetism and self-doped p—n junctions in CrBr3/GaN van der Waals heterostructures, ACS Appl. Mater. Interfaces 13(7), 8764 (2021)

    Article  Google Scholar 

  57. P. J. Jeon, Y. T. Lee, J. Y. Lim, J. S. Kim, D. K. Hwang, and S. Im, Black phosphorus—zinc oxide nanomaterial heterojunction for p—n diode and junction field-effect transistor, Nano Lett. 16(2), 1293 (2016)

    Article  ADS  Google Scholar 

  58. P. K. Srivastava, Y. Hassan, Y. Gebredingle, J. Jung, B. Kang, W. J. Yoo, B. Singh, and C. Lee, Van der waals broken-gap p—n heterojunction tunnel diode based on black Phosphorus and rhenium disulfide, ACS Appl. Mater. Interfaces 11(8), 8266 (2019)

    Article  Google Scholar 

  59. D. Qu, X. Liu, M. Huang, C. Lee, F. Ahmed, H. Kim, R. S. Ruoff, J. Hone, and W. J. Yoo, Carrier-type modulation and mobility improvement of thin MoTe2, Adv. Mater. 29(39), 1606433 (2017)

    Article  Google Scholar 

  60. Y. Xie, E. Wu, S. Fan, G. Geng, X. Hu, L. Xu, S. Wu, J. Liu, and D. Zhang, Modulation of MoTe2/MoS2 van der Waals heterojunctions for multifunctional devices using N2O plasma with an opposite doping effect, Nanoscale 13(16), 7851 (2021)

    Article  Google Scholar 

  61. J. E. Kim, W. T. Kang, V. Tu Vu, Y. R. Kim, Y. S. Shin, I. Lee, U. Y. Won, B. H. Lee, K. Kim, T. L. Phan, Y. H. Lee, and W. J. Yu, Ideal PN photodiode using doping controlled WSe2—MoSe2 lateral heterostructure, J. Mater. Chem. C 9(10), 3504 (2021)

    Article  Google Scholar 

  62. C. H. Lee, G. H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, Atomically thin p—n junctions with van der Waals heterointerfaces, Nat. Nanotechnol. 9(9), 676 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 62174151 and 61775201) and the Fund of Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ22F040003 and LY22A040002). Computational resources from the Shanghai Supercomputer Center are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Shu.

Supporting Information

11467_2022_1244_MOESM1_ESM.pdf

Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, M., Lu, Y. et al. Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures. Front. Phys. 18, 33307 (2023). https://doi.org/10.1007/s11467-022-1244-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-022-1244-4

Keywords

Navigation